K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2022

Xét tam giác ABD có:

AB//IE (gt)

=>\(\dfrac{IE}{AB}=\dfrac{DI}{BD}\)(định lí Ta-let). (1)

Xét tam giác ABI có:

AB//DC (gt)

=>\(\dfrac{DI}{BD}=\dfrac{CI}{AC}\)(định lí Ta-let) (2)

Xét tam giác ABC có:

IF//AB (gt)

=>\(\dfrac{IF}{AB}=\dfrac{CI}{AC}\)(định lí Ta-let) (3)

- Từ (1),(2),(3) suy ra \(\dfrac{EI}{AB}=\dfrac{IF}{AB}\)=>EI=IF

Ta có: \(\dfrac{IE}{AB}=\dfrac{DI}{BD}\)(cmt) =>\(\dfrac{AB}{IE}=\dfrac{BD}{DI}\)=>\(\dfrac{AB}{IE}-1=\dfrac{BI}{DI}\)(4)

Xét tam giác ABI có:

AB//DC (gt)

=>\(\dfrac{BI}{DI}=\dfrac{AB}{DC}\)(định lí Ta-let) (5)

- Từ (4) và (5) suy ra: \(\dfrac{AB}{IE}-1=\dfrac{AB}{DC}\)

=>\(\dfrac{AB}{IE}=\dfrac{DC+AB}{DC}\)

=>IE=IF=\(\dfrac{AB.DC}{AB+DC}=\dfrac{4.5}{9}=\dfrac{20}{9}\left(cm\right)\)

31 tháng 8 2019

a) Ta có:

+) M là trung điểm của AD và MN // CD

MN là đường trung bình của hình thang ABCD

N là trung điểm của BC

+) M là trung điểm của AB và ME // AB

ME là đường trung...

27 tháng 10 2021

= một vé báo cáo chứ sao khó ợt

28 tháng 9 2019

Gọi H là trung điểm DC. 

Chứng minh HE// IF( vì cùng //BC)

=> HE vuông FK ( vì FK vuông IF)

Tương tự HF// EI( vì cùng //AD)

=> HF vuông  EK( vì EK vuông IE)

Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC

25 tháng 4 2018

a) ABCD là hình thang nên AB//CD

CD=2AB ==>AB/CD=1/2

AB//CD, áp dụng định lý Ta-let, ta có

OA/OC=OB/OD=AB/CD=1/2

=>OA/OC=1/2 => OC=2OA

B) Ta có : OA/OC=OB/OD=AB/CD=1/2

==> OD/OB = 2 ==>OD = 2OB

*xét: OC/AC = 2OA/(OA + OC) = 2OA/(OA + 2OA) = 2OA/3OA = 2/3(1);

OD/BD = 2OB/(OD + OB) = 2OB/(2OB + OB) = 2/3(2)
*từ (1),(2) =>OC/AC = OD/BD = 2/3
=>O là trọng tâm tam giác FCD

c)

Vì một đường thẳng song song với AB và CD lần lượt cắt các đoạn thẳng AD, BD,AC và BC tại M, I,K và N nên KN//AB ,IM//AB và IN//AB

MI//AB, áp dụng hệ quả của định lý Ta-let, ta có

MI/AB = DM/AD = DI/IB (1)

IN//AB, áp dụng định lý Ta-let, ta có

CN/BC=DI/IB (2)

Từ (1) và (2), ta có

DM/AD=CN/BC

d)

KN//AB, áp dụng hệ quả của định lý Ta-let, ta có

KN/AB=CN/BC

Ta có :KN/AB=CN/BC và MI/AB=DM/AD

mà DM/AD=CN/BC nên KN/AB=MI/AB => KN=MI