K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

đề đâu

9 tháng 5 2016

1/ab(a+b)+bc(b+c)+ca(c+a)+2abc

= a^2b + ab^2 + b^2c + bc^2 + ca(c+a) + 2abc

= ab^2 + b^2c + a^2b + bc^2 + 2abc + ca(c+a)

=b^2(a+c) + b(a^2 + c^2 + 2ac) + ca(c+a)

=b^2(a+c) + b(a+c)^2 + ca(c+a)

=(c+a)[b^2 + b(a+c) + ca]

=(c+a)[b^2 + ab + bc + ca]

=(c+a)[b(b+a) + c(b+a)]

=(c+a)(b+c)(b+a)

2/VP=-(x-4)

pt trở thành \(\sqrt[3]{16-x^3}=-\left(x-4\right)\)

<=>x=2

20 tháng 8 2017

\(A=444....444=4.111.....111=4.\frac{10^{2n}-1}{9}\)

\(B=888.....888=8.111.....111=8.\frac{10^n-1}{9}\)

\(\Rightarrow A+2B+4=\frac{4.10^{2n}-4+16.10^n-16+36}{9}=\frac{4.10^{2n}+16.10^n+16}{9}=\left(\frac{2.10^n+4}{3}\right)^2\)

là số hính phương (đpcm)

20 tháng 8 2017

2) Ta có :

\(x^4+6x^2+25=x^4+10x^2+25-4x^2=\left(x^2+5\right)^2-\left(2x\right)^2\)

\(=\left(x^2-2x+5\right)\left(x^2+2x+5\right)\)(1)

\(3x^4+4x^2+28x+5=\left(3x^4+6x^3+x^2\right)+\left(-6x^3-12x^2-2x\right)+\left(15x^2+30x+5\right)\)

\(=x^2\left(3x^2+6x+1\right)-2x\left(3x^2+6x+1\right)+5\left(3x^2+6x+1\right)\)

\(=\left(x^2-2x+5\right)\left(3x^2+6x+1\right)\)(2)

Từ (1) ; (2) \(\Rightarrow f\left(x\right)=x^2-2x+5\Rightarrow f\left(2011\right)=2011^2-2.2011+5=4040104\)

b)Ta có:\(A=2018^2+2019^2+2019^2.2018^2\)

\(=\left(2018^2-2.2018.2019+2019^2\right)+2.2018.2019+\left(2018.2019\right)^2\)

\(=\left(2019.2018\right)^2+2.2018.2019+1^2=\left(2019.2018+1\right)^2\)là số chính phương (đpcm)

c)Ta có:Xét hiệu a^2+b^2+c^2+d^2-a(b+c+d),ta có:

\(a^2+b^2+c^2+d^2-a\left(b+c+d\right)=a^2+b^2+c^2+d^2-ab-ac-ad\)

\(=\left(\frac{1}{4}a^2-ab+b^2\right)+\left(\frac{1}{4}a^2-ac+c^2\right)+\left(\frac{1}{4}a^2-ad+d^2\right)+\frac{a^2}{4}\)

\(=\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}\right)^2\ge0\forall a,b,c,d\left(đpcm\right)\)

\(\Rightarrow a^2+b^2+c^2\ge a\left(b+c+d\right)-d^2\)

Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}b=c=d=\frac{a}{2}\\\frac{a}{2}=0\end{cases}\Leftrightarrow}a=b=c=d=0\)

11 tháng 6 2015

Gọi số chính phương đó là m

=> m = p2 (p \(\in\) N)

Ta gọi p = ax.by.cz... (a;b; c là  các thừa số nguyên tố )

=> m = (ax.by.cz... )2 = a2x.by2y.c2z... 

=> đpcm

30 tháng 8 2017

* Chứng minh:

Phương trình a x 2   +   b x   +   c   =   0 có hai nghiệm  x 1 ;   x 2

⇒ Theo định lý Vi-et: Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

Khi đó : a.(x – x1).(x – x2)

= a.(x2 – x1.x – x2.x + x1.x2)

= a.x2 – a.x.(x1 + x2) + a.x1.x2

Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

=   a . x 2   +   b x   +   c   ( đ p c m ) .

* Áp dụng:

a)  2 x 2   –   5 x   +   3   =   0

Có a = 2; b = -5; c = 3

⇒ a + b + c = 2 – 5 + 3 = 0

⇒ Phương trình có hai nghiệm Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy: Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

b)  3 x 2   +   8 x   +   2   =   0

Có a = 3; b' = 4; c = 2

⇒  Δ ’   =   4 2   –   2 . 3   =   10   >   0

⇒ Phương trình có hai nghiệm phân biệt:

Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

a: =(x+y)^3+z^3-3xy(x+y)-3xyz

=(x+y+z)(x^2+2xy+y^2-xz-yz+z^2)-3xy(x+y+z)

=(x+y+z)(x^2+y^2+z^2-xy-xz-yz)

b: a+b+c<>0

A=(a+b+c)^3-a^3-b^3-c^3/a+b+c

=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)/(a+b+c)

=a^2+b^2+c^2-ab-ac-bc

=1/2[a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2]

=1/2[(a-b)^2+(b-c)^2+(a-c)^2]>=0

8 tháng 5 2018

bài 1 : \(a^2-b^2-4ab+4\)

\(=\left(a-b\right)\left(a+b\right)-4\left(ab-1\right)\)

22 tháng 3 2019

kb nhé

8 tháng 5 2019

12345x331=...///???......................ai nhanh  mk tk cho

20 tháng 12 2017

a)phân tích đa thức ra nhân tử

M = (a2+b2-c2)2 - 4a2b2 =(a2+b2-c2)2 - (2ab)2 = [ (a2+b2-c2) - 2ab]  . [ (a2+b2-c2) + 2ab]

  = [(a-b)2-c2] .[(a+b)2-c2]  = (a-b-c)(a-b+c)(a+b-c)(a+b+c)

b)chứng minh nếu a,b,c là số đo các cạnh của tam giác thì M<0

M = (a-b-c)(a-b+c)(a+b-c)(a+b+c)

ta biết trong 1 tam giác tổng 2 cạnh luôn lớn hơn cạnh còn lại. Nếu a,b,c là số đo các cạnh của tam giác

ta luôn có: a+b+c > 0;   a+b-c>0 ; a-b+c> 0; a-b-c = a -(b+c) <0

Vậy tích M = (a-b-c)(a-b+c)(a+b-c)(a+b+c) <0