Tính GTBT:
A=5^2+10^2+15^2+.....+2015^2
B=1^2-2^2+3^2-4^2+.......+2015^2-2016^2
C=10+10^2+10^3+........+10^17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 9 x 10 + 10 x 11 + 11 x 12 + ....+ 2015 x 2016
=9x10x11-8x9x10+10x11x12-9x10x11+...+2015x2016x2017-2014x2015x2013
=2015x2016x2017-8x9x10
=8193537360
a/A=1+2+4+8+...+1024
2A=2+4+8+16+....+2048
2A-A=(2+4+8+16+....+2048)-(1+2+4+8+...+1024)
A=2048-1
A=2047
VẬY A=2047
b/B=1+5+25+125+....+15625
5B=5+25+125+625+....+78125
5B-B=(5+25+125+625+....+78125)-(1+5+25+125+....+15625)
4B=78125-1
4B=78124
B=78124:4
B=19531
VẬY B =19531
C=1/1.2+1/2.3+1/3.4+...+1/2015.2016
C=1-1/2+1/2-1/3+1/3-1/4+...+1/2015-1/2016
=1-1/2016
=2015/2016
VẬY C=2015/2016
D/=10/1.3+10/3.5+10/5.7+....+10/2013.2015
=5(2/1.3+2/3.5+2/5.7+...+2/2013.2015)
=5(1-1/3+1/3-1/5+1/5-1/7+..+1/2013-1/2015)
=5(1-1/2015)
=5.2014/2015
=2014/403
VẬY D=2014/403
a, A = 1 + 2 + 4 + 8 +...+ 1024
\(A=1+2+2^2+2^3+....+2^{10}\)
\(2A=2+2^2+2^3+....+2^{10}+2^{11}\)
\(A=1+2+2^2+2^3+....+2^{10}\)
\(A=2^{11}-1=2047\)
b, B = 1 + 5 + 25 + 125 + ... + 15625
\(B=1+5+5^2+5^3+....+5^6\)
\(3B=5+5^2+5^3+....+5^6+5^7\)
\(B=1+5+5^2+5^3+....+5^6\)
\(2B=5^7-1\Rightarrow B=\frac{5^7-1}{2}=39062\)
d, D = 10 / 1 . 3 + 10 / 3 . 5 + 10 / 5 . 7 + ... + 10 / 2013 . 2015
\(D=\frac{10}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)
\(D=\frac{10}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(D=\frac{10}{2}.\left(1-\frac{1}{2015}\right)=5.\frac{2014}{2015}=\frac{2014}{403}\)
Câu c thì tương tự
\(A=\frac{99.100.101}{3}=333300\)
\(B=\frac{2015.2016.2017.2018}{4}-\frac{6.7.8.9}{4}=4133639960604\)
\(C=\frac{3^{51}-1}{3}+1\)
3A= 1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+99.100.(101-98)
3A= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100
3a= 99.100.101
Xin lỗi nhé mình mới học lớp 6 ko biết hnhieeuf về bài lớp 7 lên mình chỉ làm được mỗi câu a thôi, nhớ tích cho mk nhé
a)
A= \(5^2+10^2+15^2+...+2015^2\)
\(A=\left(5.1\right)^2+\left(5.2\right)^2+\left(5.3\right)^2+...+\left(5.403\right)^2\)
\(A=5^2.1^2+5^2.2^2+5^2.3^2+...+5^2.403^2\)
\(A=5^2.\left(1^2+2^2+3^2+...+403^2\right)\)
\(A=25.\left[1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+403.\left(404-1\right)\right]\)
\(A=25.\left[\left(1.2+2.3+3.4+...+403.404\right)-\left(1+2+3+...+403\right)\right]\)
Gọi :\(B=1.2+2.3+3.4+...+403.404\)
\(3B=1.2.3+2.3.3+3.4.3+...+403.404.3\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+403.404.\left(405-402\right)\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+403.404.405-402.403.404\)
\(=403.404.405\)
\(=65938860\)
Gọi \(C=1+2+3+...+403\) (403 số hạng)
\(=\frac{\left(403+1\right).403}{2}\)
\(=\frac{162812}{2}\)
\(=81406\)
Suy ra \(A=25.\left(B-C\right)\)
\(=25.\left(65938860-81406\right)\)
\(=25.65857454\)
\(=1646436350\)