K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2019

Áp dụng BĐT Bunhiacopxki:

\(x+\sqrt{2-x^2}\le\sqrt{\left(1^2+1^2\right)\left[x^2+\left(2-x^2\right)\right]}\le\sqrt{2.2}=2\)

(Dấu "="\(\Leftrightarrow x=1\))

và \(4y^2+4y+3=\left(2y+1\right)^2+2\ge2\)

(Dấu "="\(\Leftrightarrow y=\frac{-1}{2}\))

\(\Rightarrow x+\sqrt{2-x^2}=4y^2+4y+3\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}\)

25 tháng 11 2015

Vậy phương trình chỉ có nghiệm tầm thường (0;0;0) 

25 tháng 11 2015

vì 2xyz chẵn => X^2+y^2+z^2 chẵn

2TH

TH1: giả sử x chẵn,y,z đều lẻ thì

x=2a,y=2b+1,z=2c+1

thay vào phương trình đã cho thì được VT lẻ , VP chẵn nên mẫu thuẫn

TH2: 3 số đều chẵn

x=2a,y=2b,z=2c

=> 4(a^2+b^2+c^2)=16abc

=> a^2+b^2+c^2=4abc

cứ như thế,pt lùi vô hạn, nghiệm bằng 0

x=y=z=0

11 tháng 8 2019

\(3x^2+4y^2=6x+13\)

\(\Leftrightarrow3x^2-6x+3+4y^2=16\)

\(\Leftrightarrow3\left(x^2-2x+1\right)+4y^2=16\)

\(\Leftrightarrow3\left(x-1\right)^2+\left(2y\right)^2=16\)

Ta có : \(0\le\left(2y\right)^2\le16\)

\(\Rightarrow\left(2y\right)^2\in\left\{0;1;4;9;16\right\}\)

\(\Rightarrow2y\in\left\{0;1;2;3;4\right\}\)

Mà y nguyên nên \(y\in\left\{0;1;2\right\}\)

+) Với \(y=0\Leftrightarrow3\left(x-1\right)^2=16\Leftrightarrow\left(x-1\right)^2=\frac{16}{3}\)( loại vì x nguyên )

+) Với \(y=1\Leftrightarrow3\left(x-1\right)^2=12\Leftrightarrow\left(x-1\right)^2=4\Leftrightarrow\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

+) Với \(y=2\Leftrightarrow3\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy pt có nghiệm \(\left(x;y\right)=\left\{\left(3;1\right);\left(-1;1\right);\left(1;2\right)\right\}\)

11 tháng 8 2019

Hỏi đáp Toán

21 tháng 8 2019

\(48-4y^2-4y\)

\(=-\left(4y^2+4y-48\right)\)

\(=-\left[\left(2y+1\right)^2-49\right]\)

\(=-\left(2y+1-7\right)\left(2y+1+7\right)\)

\(=-\left(2y-6\right)\left(2y+8\right)\)

\(=-4\left(y-3\right)\left(y+4\right)\)

2 tháng 8 2021

Trả lời:

5, x2 - y2 + 4x + 4 

= ( x2 + 4x + 4 ) - y2

= ( x + 2 )2 - y2

= ( x + 2 - y ) ( x + 2 + y )

6, x2 + 2x - 4y2 - 4y

= ( x2 - 4y2 ) + ( 2x - 4y )

= ( x - 2y ) ( x + 2y ) + 2 ( x - 2y )

= ( x - 2y ) ( x + 2y + 2 )

7, 3x2 - 4y + 4x - 3y2

= ( 3x2 - 3y2 ) + ( 4x - 4y )

= 3 ( x2 - y2 ) + 4 ( x - y )

= 3 ( x - y ) ( x + y ) + 4 ( x - y )

= ( x - y ) [ 3 ( x + y ) + 4 ]

= ( x - y ) ( 3x + 3y + 4 )

8, x4 - 6x3 + 54x - 81

= ( x4 - 81 ) - ( 6x3 - 54x )

= ( x2 - 9 ) ( x2 + 9 ) - 6x ( x2 - 9 )

= ( x2 - 9 ) ( x2 + 9 - 6x )

= ( x - 3 ) ( x + 3 ) ( x - 3 )2

= ( x - 3 )3 ( x + 3 )

2 tháng 8 2021

a, \(x^2-y^2+4x+4=\left(x+2\right)^2-y^2=\left(x+2-y\right)\left(x+2+y\right)\)

b, \(x^2+2x-4y^2-4y=\left(x-2y\right)\left(x+2y\right)+2\left(x-2y\right)=\left(x-2y\right)\left(x+2+2y\right)\)

c, \(3x^2-4y+4x-3y^2=3\left(x-y\right)\left(x+y\right)-4\left(y-x\right)=\left(x-y\right)\left(3x+3y+4\right)\)

d, \(x^4-6x^3+54x-81=\left(x^2+9\right)\left(x-3\right)\left(x+3\right)-6x\left(x^2-9\right)\)

\(=\left(x-3\right)\left(x+3\right)\left(x^2-6x+9\right)=\left(x-3\right)^3\left(x+3\right)\)

24 tháng 2 2017

hình như em ghi sai đề rồi em nhé vì câu a không cũng 1 dạng sẽ không đưa về hằng đẳng thức được!