K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

Đoạn thẳng \(AB\) là đường chéo của hình chữ nhật với chiều dài là \(4cm;\) chiều rộng là \(2cm\). Áp dụng định lí Py – ta – go ta được: \(A{B^2} = {2^2} + {4^2} = 4 + 16 = 20 \Rightarrow AB = \sqrt {20}  = 2\sqrt 5 \)

Đoạn thẳng \(AC\) là đường chéo của hình chữ nhật với chiều dài là \(4cm;\) chiều rộng là \(2cm\). Áp dụng định lí Py – ta – go ta được: \(A{C^2} = {2^2} + {4^2} = 4 + 16 = 20 \Rightarrow AC = \sqrt {20}  = 2\sqrt 5 \)

Đoạn thẳng \(BC\) là đường chéo của hình chữ nhật với chiều dài là \(6cm;\) chiều rộng là \(2cm\). Áp dụng định lí Py – ta – go ta được: \(B{C^2} = {2^2} + {6^2} = 4 + 36 = 40 \Rightarrow BC = \sqrt {40}  = 2\sqrt {10} \)

Từ hình vẽ ta thấy:

\(Q\) là trung điểm của \(AC\);

\(R\) là trung điểm của \(AB\);

\(P\) là trung điểm của \(BC\).

- Vì \(Q\) là trung điểm của \(AC\); \(R\) là trung điểm của \(AB\) nên \(QR\) là đường trung bình của tam giác \(ABC \Rightarrow QR = \frac{1}{2}BC\) (tính chất đường trung bình)

\( \Leftrightarrow QR = \frac{1}{2}.2\sqrt {10}  = \sqrt {10} \left( {cm} \right)\).

- Vì \(Q\) là trung điểm của \(AC\); \(P\) là trung điểm của \(BC\) nên \(QP\) là đường trung bình của tam giác \(ABC \Rightarrow QP = \frac{1}{2}AB\) (tính chất đường trung bình)

\( \Leftrightarrow QP = \frac{1}{2}.2\sqrt 5  = \sqrt 5 \left( {cm} \right)\).

- \(R\) là trung điểm của \(AB\); \(P\) là trung điểm của \(BC\) nên \(RP\) là đường trung bình của tam giác \(ABC \Rightarrow RP = \frac{1}{2}AC\) (tính chất đường trung bình)

\( \Leftrightarrow RP = \frac{1}{2}.2\sqrt 5  = \sqrt 5 \left( {cm} \right)\).

\(AB=\sqrt{4^2+2^2}=2\sqrt{5}\left(cm\right);AC=\sqrt{4^2+2^2}=2\sqrt{5}\left(cm\right)\)

BC=căn 2^2+6^2=2*căn 10(cm)

Xét ΔABC có P,Q lần lượt là trung điểm của CB,CA

=>PQ là đường trung bình

=>\(PQ=\dfrac{AB}{2}=\sqrt{5}\left(cm\right)\)

Xét ΔABCcóQ,R lần lượt là trung điểm của AC,AB

=>QR là đường trung bình

=>\(QR=\dfrac{BC}{2}=\sqrt{10}\left(cm\right)\)

Xét ΔABC có P,R lần lượt là trung điểm của BC,BA

=>PR là đường trung bình

=>\(PR=\dfrac{AC}{2}=\sqrt{5}\left(cm\right)\)

17 tháng 9 2021

giúp mình

hình tam giác đều thì độ dài các cạnh bằng nhau mà...

12 tháng 12 2024

xx

 

14 tháng 4 2019

Áp dụng định lý Pitago trong tam giác vuông ABC ta có: (vì AB = AC)

Từ đây suy ra .

Lại có M là trung điểm của AC nên .

Gọi I là trung điểm của BC, G là giao điểm của AI và BM, suy ra G là trọng tâm tam giác ABC, suy ra BM = 3GM     (1).

Do ABC là tam giác vuông nên AI = IB = IC, do đó tam giác IAC là tam giác cân tại I, suy ra                          (2)

Lại có AM = MC (3).

    (4)

 Từ (2), (3) và (4) suy ra  (c.g.c)

Suy ra GM = NM (5). Từ (1) và (5) suy ra BM = 3NM (đpcm).

AH
Akai Haruma
Giáo viên
9 tháng 10 2021

Bài 1:

Áp dụng HTL trong tam giác vuông:

$AB^2=BH.BC$

$\Rightarrow BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6$ (cm)

$CH=BC-BH=10-3,6=6,4$ (cm)

Tiếp tục áp dụng HTL: 

$AH^2=BH.CH=3,6.6,4$

$\Rightarrow AH=4,8$ (cm)

$AC^2=CH.BC=6,4.10=64$

$\Rightarrow AC=8$ (cm)

AH
Akai Haruma
Giáo viên
9 tháng 10 2021

Bài 2:

Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+1^2}=2$ (cm)

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{\sqrt{3}.1}{2}=\frac{\sqrt{3}}{2}$ (cm)

$BH=\sqrt{AB^2-AH^2}=\sqrt{3-\frac{3}{4}}=\frac{3}{2}$ (cm)

$CH=BC-BH=2-\frac{3}{2}=\frac{1}{2}$ (cm)

Xin lỗi bn mink mới học có lớp 5 thôi à nên MINK ko thể giúp bn,  xin lỗi nha 

8 tháng 7 2017

Mk mới học lớp 6 thôi nên mk ko giúp được bạn . Sorry nha !

13 tháng 8 2019

Giải bài 11 trang 74 Toán 8 Tập 1 | Giải bài tập Toán 8

(Mỗi ô vuông là 1cm).

Nhìn vào hình vẽ ta thấy :

+ AB = 2cm

+ CD = 4cm.

+ Tính AD :

Xét tam giác vuông ADE có AE = 1cm, DE = 3cm.

⇒ AD2 = AE2 + DE2 (Định lý Pytago)

= 12 + 32 = 10

⇒ AD = √10 cm

+ Tính BC :

ABCD là hình thang cân nên BC = AD = √10 cm.

Vậy AB = 2cm, CD = 4cm, AD = BC = √10 cm.

18 tháng 2 2022

Chu vi hình tứ giác ABCD là:

1+1+1+1=4(cm)

Đ/s:4cm

18 tháng 2 2022

TL

Chu vi hình tứ giác ABCD là:

1+1+1+1=4(cm)

ĐÁP SỐ 4 cm

HT