Giải phương trình nghiệm nguyên : \(x,y\ge0\)
\(2^{3x+4}+3^{2x+1}=19y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(3x+19y=168\)
\(\Rightarrow3x=168-19y\Rightarrow x=56-\dfrac{19y}{3}\)
Để \(x\in Z\Leftrightarrow19y⋮3\Leftrightarrow y⋮3\)
\(\Rightarrow y=3t\left(t\in Z\right)\)
Khi đó \(x=56-19t\)
Vậy \(\left(x;y\right)\in\left\{56-19t;3t\right\}\left(t\in Z\right)\)
\(x^4+2x^3+3x^2+2x=y^2-y\)
\(\Leftrightarrow x^4+x^2+1+2x^3+2x^2+2x=y^2-y+1\)
\(\Leftrightarrow\left(x^2+x+1\right)^2=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\Leftrightarrow\left(x^2+x+1-y+\frac{1}{2}\right)\left(x^2+x+1+y-\frac{1}{2}\right)=\frac{3}{4}\)
\(\Leftrightarrow\left(x^2+x-y+\frac{3}{2}\right)\left(x^2+x+y+\frac{1}{2}\right)=\frac{3}{4}\)
\(\Leftrightarrow\left(2x^2+2x-2y+3\right)\left(2x^2+2x+2y+1\right)=3\)
Đến đây chắc khó.
#)Giải :
VD1:
Với \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)ta có :
\(x^3< x^3+x^2+x+1< \left(x+1\right)^3\)
\(\Rightarrow x^3< y^3< \left(x+1\right)^3\)( không thỏa mãn )
\(\Rightarrow-1\le x\le0\)
Mà \(x\in Z\Rightarrow x\in\left\{-1;0\right\}\)
Với \(\orbr{\begin{cases}x=-1\\x=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}}\)
Vậy...........................
#)Giải :
VD2:
\(x^4-y^4+z^4+2x^2z^2+3x^2+4z^2+1=0\)
\(\Leftrightarrow y^4=x^4+z^4+2x^2z^2+3x^2+4z^2+1\)
\(\Leftrightarrow y^4=\left(x^2+y^2\right)+3x^2+4z^2+1\)
Ta dễ nhận thấy : \(\left(x^2+y^2\right)^2< y^4< \left(x^2+y^2+2\right)^2\)
Do đó \(y^4=\left(x^2+y^2+1\right)^2\)
Thay vào phương trình, ta suy ra được \(x=z=0\)
\(\Rightarrow y=\pm1\)
a. TH1:
\(\left\{{}\begin{matrix}x^2+3x-4< 0\\3-2x>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 1\\x>-4\end{matrix}\right.\\x>\dfrac{3}{2}\end{matrix}\right.\)
TH2:
\(\left\{{}\begin{matrix}x^2+3x-4>0\\3-2x< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>1\\x< -4\end{matrix}\right.\\x< \dfrac{3}{2}\end{matrix}\right.\)
Vậy nghiệm của BPT:
\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 1\\x>-4\end{matrix}\right.\\x>\dfrac{3}{2}\end{matrix}\right.\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>1\\x< -4\end{matrix}\right.\\x< \dfrac{3}{2}\end{matrix}\right.\)
a)3x-2≥x+6
<=>3x-x≥6+2
<=>2x≥8
<=>x≥4
tập nghiệm của phương trình là
\(S=\left\{xIx\ge4\right\}\)
biểu diễn tập nghiệm trên trục số
b)(3x-6)-(-2x-1)≥0
<=>3x-6++1≥0
<=>3x+2x≥6-1
<=>5x≥5
<=>x≥1
tập nghiệm của phương trình là
\(S=\left\{xIx\ge1\right\}\)
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
Làm cái này thử đi:
Cho \(x,y\ge0\)giải phương trình.
\(9^x-8^x=19y\)
Giải được thì nói tiếp :3