Rút gọn biểu thức A=(a+b+c)^3+(a-b-c)^3-6a(b+c)^2-2a^3+8 ta được??????
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(2a-3\right)\left(a+1\right)+\left(a^2+6a+9\right):\left(a+3\right)\\ =2a^2-a-3+\left(a+3\right)^2:\left(a+3\right)\\ =2a^2-a-3+a+3\\ =2a^2\\ b,\left(3x-5y\right)\left(-xy\right)^2-3x^2y^2+4x^2y^3\\ =3x^3y^2-5x^2y^3-3x^2y^2+4x^2y^3\\ =3x^3y^2-3x^2y^2-x^2y^3\\ c,x\left(x-2\right)^2-\left(x+2\right)\left(x^2-2x+4\right)+4x^2\\ =x^3-4x^2+4x-x^3-8+4x^2\\ =4x-8\)
\(A=\sqrt{64a^2}\cdot2a=\sqrt{\left(8a\right)^2}\cdot2a=\left|8a\right|\cdot2a\)
Với a < 0 A = 8a.(-2a) = -16a2
Với a ≥ 0 A = 8a.2a = 16a2
\(B=3\sqrt{9a^6}-6a^3=3\sqrt{\left(3a^3\right)^2}-6a^3=9\left|a^3\right|-6a^3\)
\(B=\dfrac{\left(a+3\right)^2}{2a^2+6a}\cdot\dfrac{1-6a-18}{a^2-9}\\ a,ĐK:a\ne0;a\ne\pm3\\ b,B=\dfrac{\left(a+3\right)^2}{2a\left(a+3\right)}\cdot\dfrac{-17-6a}{\left(a-3\right)\left(a+3\right)}=\dfrac{-17-6a}{2a\left(a-3\right)}\\ c,B=0\Leftrightarrow-17-6a=0\Leftrightarrow a=-\dfrac{17}{6}\left(tm\right)\\ d,B=1\Leftrightarrow-17-6a=2a^2-6a\\ \Leftrightarrow2a^2=-17\Leftrightarrow a\in\varnothing\)
\(A=\left(a+b+c\right)^3+\left(a-b-c\right)^3-6a\left(b+c\right)^2\)
\(=\left[a+\left(b+c\right)\right]^3+\left[a-\left(b+c\right)\right]^3-6a\left(b+c\right)^2\)
\(=a^3+3a^2\left(b+c\right)+3a\left(b+c\right)^2+\left(b+c\right)^3+a^3-3a^2\left(b+c\right)+3a\left(b+c\right)^2-\left(b+c\right)^3-6a\left(b+c\right)^2\)
\(=2a^3\)
`M=(2a+2ab-b-1)/(3b(2a-1)+6a-3)`
`=(2a-1+b(2a-1))/(3(2a-1)(b+1))`
`=((2a-1)(b+1))/(3(2a-1)(b+1))`
`=1/3`
`=>` CHọn D
Ta có
B = 2 a − 3 a + 1 − a − 4 2 − a a + 7 = 2 a 2 + 2 a – 3 a – 3 – ( a 2 – 8 a + 16 ) – ( a 2 + 7 a ) = 2 a 2 + 2 a – 3 a – 3 – a 2 + 8 a – 16 – a 2 – 7 a = - 19
Đáp án cần chọn là: D
Giải \(A=\frac{a^3+2a^2-1}{a^3+2a^22a+1}\) \(A=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}\) \(A=\frac{a^2\left(a+1\right)\left(a+1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}\) \(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2 +a+1\right)}\) \(A=\frac{a^2+a-1}{a^2+a+1}\) b, Gọi d là ƯCLN \(\left(a^2+a-1;a^2+a+1\right)\) \(\Rightarrow\)\(a^2+a-1⋮d\) \(a^2+a+1⋮d\) \(\Rightarrow\left(a^2+a+1\right)-\left(a^2+a-1\right)⋮d\) \(\Rightarrow2⋮d\) \(\Rightarrow d=1\) hoặc d=2 Nhận xét : \(a^2+a-1=a\left(a+1\right)-1\) Với số nguyên a ta có :a(a+1) là tích 2 số nguyên liên tiếp \(\Rightarrow a\left(a+1\right)⋮2\) \(\Rightarrow a\left(a+1\right)-1\) lẻ \(\Rightarrow a^2+a-1\) lẻ \(\Rightarrow\) d không thể bằng 2 Vậy d=1 (đpcm)
Giúp mình với các bạn ơooooooooooooooooooooi
duoc 8