K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2021

S= 2x(1/1x2+1/2x3+1/3x4+...........+1/2020x2021)

S=2x(1-1/2+1/2-1/3+1/3-...+1/2020-1/2021)

S=2x(1-1/2021)

S=2x2020/2021

S=4040/2021

2019/2010<3/2<4040/2021

=>2019/2010<S

11 tháng 5 2021

S = 2 x (\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\)\(\frac{2}{2020\times2021}\))

= 2 x (\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\)\(\frac{1}{2020\times2021}\)

= 2 x ( \(1-\frac{1}{2021}\))

\(2\times\frac{2020}{2021}\)

\(\frac{4040}{2021}\)

\(\frac{4042-2}{2021}\)

\(=2-\frac{2}{2021}\)

Ta có :

\(\frac{2019}{2010}=\frac{2020-1}{2010}=2-\frac{1}{2010}=2-\frac{2}{2020}\)

Ta thấy \(\frac{2}{2021}< \frac{2}{2020}\)

nên \(2-\frac{2}{2021}>2-\frac{2}{2020}\)

Vậy \(S\)\(>\frac{2019}{2010}\)

8 tháng 8 2021

Bạn tham khảo bài giải dưới nhé

Cre: Olm

   undefined

Hc tốt:)

Nguồn: Tính tổng: 1x2 + 2x3 + 3x4 +...+ 2019x2020 + 2020x2021 - Hoc24
Đặt A=1.2+2.3+3.4+.........+2019.2020+2020.2021A=1.2+2.3+3.4+.........+2019.2020+2020.2021

3A=1.2.3+2.3.3+3.4.3+.....+2019.2020.3+2020.2021.3⇒3A=1.2.3+2.3.3+3.4.3+.....+2019.2020.3+2020.2021.3

=1.2.3+2.3.(41)+3.4.(52)+.....+2020.2021.(20222019)=1.2.3+2.3.(4−1)+3.4.(5−2)+.....+2020.2021.(2022−2019)

=1.2.3+2.3.41.2.3+3.4.52.3.4+...+2020.2021.20222019.2020.2021=1.2.3+2.3.4−1.2.3+3.4.5−2.3.4+...+2020.2021.2022−2019.2020.2021

=2020.2021.2022=2020.2021.2022

A=2020.2021.20223

cho mik hoi ket qua la bao nhieu

18 tháng 10 2020

Đặt A = 1.2 + 2.3 + 3.4 + ... + 2019.2020 + 2020.2021

=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2019.2020.3 + 2020.2021.3

=> 3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 2019.2020.(2021 - 2018) + 2020.2021.(2022 - 2019)

=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 2019.2020.2021 - 2018.2019.2020 + 2020.2021.2022 - 2019.2020.2021

=> 3A = 2020.2021.2022

=> A = 2 751 551 080

18 tháng 10 2020

Đặt \(A=1.2+2.3+3.4+.........+2019.2020+2020.2021\)

\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+.....+2019.2020.3+2020.2021.3\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+.....+2020.2021.\left(2022-2019\right)\)

\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+2020.2021.2022-2019.2020.2021\)

\(=2020.2021.2022\)

\(\Rightarrow A=\frac{2020.2021.2022}{3}\)

30 tháng 12 2015

S =  1x2 + 2x3 + 3x4 + ……………… + 11x12 + 12x13
3S=1x2x3 + 2x3x3 + 3x4x3+ ………. + 11x12x3 + 12x13x3

Ta lấy K = 1x2x3 +2x3x4  + 3x4x5 + ……   + 11x12x13 + 12x13x14
 -     3S  = 1x2x3 + 2x3x3 + 3x4x3+ ………  + 11x12x3  + 12x13x3
            ------------------------------------------------------------------------------------
 K – 3S =     0     + 2x3x1  + 3x4x2 + …… .. + 11x12x10 + 12x13x11

K – 3S =   K – 12x13x14
Từ đó suy ra:   3S = 12x13x14
S = 4x13x14 = 728  
 

Cách 2:
S x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + …. + 11x12x(13-10) + 12x13x(14-11)
S x 3 = 1x2x3 + 2x3x4 – 2x3x1 + 3x4x5 – 3x4x2 + …..+ 11x12x13 – 11x12x10 +12x13x14 – 12x13x11
S x 3 = 12 x 13 x14
S = 4 x 13 x 14
S = 728