Tìm x biết: (x^3-2x^2)-9x+18=0. Mọi người giúp mình nha.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`2)x^4+2x^3-x^2-2x+1=0`
`<=>x^4+2x^3+x^2-2x^2-2x+1=0`
`<=>(x^2+x)^2-2(x^2+x)+1=0`
`<=>(x^2+x-1)^2=0`
`<=>x^2+x-1=0`
`\Delta=1+4=5`
`=>x_{1,2}=(-1+-sqrt5)/2`
Vậy `S={(-1+sqrt5)/2,(-1+sqrt5)/2`
`3)x^4-4x^3-9x^2+8x+4=0`
`<=>x^4-x^3-3x^3+3x^2-12x^2+12x-4x+4=0`
`<=>(x-1)(x^3-3x^2-12x-4)=0`
`<=>(x-1)(x^3+2x^2-5x^2-10x-2x-4)=0`
`<=>(x-1)(x+2)(x^2-5x-10)=0`
`+)x=1`
`+)x=-2`
`+)x^2-5x-10=0`
`Delta=25+40=65`
`=>x_{12}=(5+sqrt{65})/2`
a) 9x-1=32
( 32 )x-1 = 32
32x-2 = 32
⇒ 2x-2 = 2
2x = 2+2
2x = 4
x = 4 : 2
x = 2
b) 5x+2=625
5x+2= 54
⇒ x+2 = 4
x = 4-2
x = 2
c) 2x: 25= 2
2x:25 = 21
2x = 21 . 25
2x = 26
⇒ x = 6
d) 3x:27=3
3x:33 = 31
3x = 31.33
3x = 34
⇒ x = 4
a) Ta có: \(9^{x-1}=3^2\)
\(\Leftrightarrow3^{2x-2}=3^2\)
\(\Leftrightarrow2x-2=2\)
\(\Leftrightarrow2x=4\)
hay x=2
Vậy: x=2
b) Ta có: \(5^{x+2}=625\)
\(\Leftrightarrow5^{x+2}=5^4\)
\(\Leftrightarrow x+2=4\)
hay x=2
Vậy: x=2
c) Ta có: \(2^x:2^5=2\)
\(\Leftrightarrow2^{x-5}=2^1\)
\(\Leftrightarrow x-5=1\)
hay x=6
Vậy: x=6
d) Ta có: \(3^x:27=3\)
\(\Leftrightarrow3^x:3^3=3\)
\(\Leftrightarrow3^{x-3}=3^1\)
\(\Leftrightarrow x-3=1\)
hay x=4
Vậy: x=4
a) \(\left(\frac{1}{7}x-\frac{2}{3}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{7}x-\frac{2}{3}=0\\-\frac{1}{5}x+\frac{3}{5}=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\frac{1}{7}x=\frac{2}{3}\\-\frac{1}{5}x=-\frac{3}{5}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{14}{3}\\x=3\end{cases}}\)
b)\(\frac{1}{10}x-\frac{4}{5}x+1=0\)
\(\Leftrightarrow x.\left(\frac{1}{10}-\frac{4}{5}\right)+1=0\)
\(\Rightarrow-\frac{7}{10}x=-1\)
\(\Rightarrow x=\frac{10}{7}\)
c)\(\left(2x-\frac{1}{3}\right).\left(5x+\frac{2}{7}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{3}=0\\5x+\frac{2}{7}=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=\frac{1}{3}\\5x=-\frac{2}{7}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{6}\\x=-\frac{2}{35}\end{cases}}\)
a, (1/7 . x - 2/3) . (-1/5 . x + 3/5) = 0
Suy ra : 1/7 .x -2/3 = 0 hoặc -1/5 .x + 3/5 =0
Vậy : 1/7 .x = 2/3 hoặc -1/5 .x = 3/5
x =2/3 : 1/7 hoặc x = 3/5 : (-1/5)
x = 14/3 hoặc x = -3
b, 1/10 .x - 4/5 .x + 1 =0
x . (1/10 - 4/5) + 1 = 0
x . (-7/10) + 1 = 0
x . -7/10 =0 +1 = 1
x = 1 : (-7/10)
x = -10/7
c, (2x - 1/3 ) . (5x +2/7) = 0
Suy ra : 2x - 1/3 = 0 hoặc 5x + 2/7 = 0
Vậy : 2x = 1/3 hoặc 5x = 2/7
x = 1/3 : 2 hoặc x = 2/7 : 5
x = 1/6 hoặc x = 2/35
(2x-3/7)(2x^2+18)=0 => 2x-3/7=0 hoặc 2x^2+18=0 => 2x=3/7 hoặc 2x^2=-18(loại vì 2x^2 >= 0)
=>x=3/7 / 2=> x=3/7*1/2=>x=3/14
Vậy : x=3/14
a) (x + 3)2 - (x - 2)2 = 2x
=> (x + 3 - x + 2)(x + 3 + x - 2) = 2x
=> 5(2x + 1) = 2x
=> 10x + 5 = 2x
=> 10x - 2x = -5
=> 8x = -5
=> x = -5/8
b) 7x(x - 2) = x - 2
=> 7x(x - 2) - (x - 2) = 0
=> (7x - 1)(x - 2) = 0
=> \(\orbr{\begin{cases}7x-1=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{7}\\x=2\end{cases}}\)
c) 8x3 - 12x2 + 6x - 1 = 0
=> (2x - 1)3 = 0
=> 2x - 1 = 0
=> 2x = 1
=> x = 1/2
\(\orbr{\begin{cases}4x-6=0\\4x+12=0\end{cases}}\left(=\right)\orbr{\begin{cases}4x=6\\4x=-12\end{cases}\orbr{\begin{cases}x=\frac{3}{2}\\-3\end{cases}}}\)
a)Ta có : /a+b/ \(\le\)/a/+/b/ ( dấu bằng xảy ra <=> 0 \(\le\)ab) (1)
A= /x+2/+/x-3/
=/x+2/+/3-x/
Theo (1 ) ta được : /x+2+3-x/ \(\le\)/x+2/ +/3-x/
=> 5 \(\le\)/x+2/+/3-x/ hay 5 \(\le\)/x+2/+/x-3/ = A
Vậy GTNN của A là 5 x=-2 hoặc x=3
b)GTNN của B là 9
a) Ta có: /x - 3/ = /3 - x/
=>A = /x + 2/ + /x - 3/ = /x + 2/ + /3 - x/ lớn hơn hoặc bằng /x + 2 + 3 - x/
Mà /x + 2 + 3 - x/ = /5/ = 5
=>A lớn hơn hoặc bằng 5
Đẳng thức xảy ra khi: (x + 2)(3 - x)=0
=>x = -2 hoặc x = 3
Vậy giá trị nhỏ nhất của A là 5 khi x = -2 hoặc x = 5
Ta có : (x3 - 2x2) - 9x + 18 = 0
<=> x2(x - 2) - (9x - 18) = 0
<=> x2(x - 2) - 9(x - 2) = 0
=> (x2 - 9) (x - 2) = 0
\(\Leftrightarrow\orbr{\begin{cases}x^2-9=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=9\\x=2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3;-3\\x=2\end{cases}}\)