K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2023

\(A=\sqrt{1-4x}\)

A có nghĩa khi:

\(1-4x\ge0\)

\(\Leftrightarrow4x\le1\)

\(\Leftrightarrow x\le\dfrac{1}{4}\)

Vậy A có nghĩa khi \(x\le\dfrac{1}{4}\)

ĐKXĐ: 1-4x>=0

=>4x<=1

=>x<=1/4

11 tháng 10 2023

1) \(A=3\sqrt{\dfrac{1}{3}}-\dfrac{5}{2}\sqrt{12}-\sqrt{48}\)

\(=3\cdot\dfrac{\sqrt{1}}{\sqrt{3}}-\dfrac{5\sqrt{12}}{2}-\sqrt{4^2\cdot3}\)

\(=\dfrac{3\cdot1}{\sqrt{3}}-\dfrac{5\cdot2\sqrt{3}}{2}-4\sqrt{3}\)

\(=\sqrt{3}-5\sqrt{3}-4\sqrt{3}\)

\(=-8\sqrt{3}\)

2) \(A=\sqrt{12-4x}\) có nghĩa khi:

\(12-4x\ge0\)

\(\Leftrightarrow4x\le12\)

\(\Leftrightarrow x\le\dfrac{12}{4}\)

\(\Leftrightarrow x\le3\)

3) \(\dfrac{2x-2\sqrt{x}}{x-1}\)

\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}-2\sqrt{x}}{\left(\sqrt{x}\right)^2-1^2}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{2\sqrt{\text{x}}}{\sqrt{x}+1}\)

13 tháng 3 2022

ĐK:\(x\ge\dfrac{3}{4}\)

13 tháng 3 2022

giari các bước giúp mình với

18 tháng 9 2021

\(a,ĐK:2-4x\ge0\Leftrightarrow x\le\dfrac{1}{2}\\ b,ĐK:4\left(x-5\right)\ge0\Leftrightarrow x-5\ge0\left(4>0\right)\Leftrightarrow x\ge5\)

a) Ta có: \(P=\dfrac{2x+2}{\sqrt{x}}+\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x^2+\sqrt{x}}{x\sqrt{x}+x}\)

\(=\dfrac{2x+2}{\sqrt{x}}+\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2x+2}{\sqrt{x}}+\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)

\(=\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\)

a: \(B=3\sqrt{x-3}+\sqrt{x-3}-\dfrac{1}{2}\cdot2\sqrt{x-3}=3\sqrt{x-3}\)

b: B=7 thì \(\sqrt{x-3}=\dfrac{7}{3}\)

=>x-3=49/9

hay x=76/9

a: ĐKXĐ: \(x\ne\dfrac{3}{2}\)

b: ĐKXĐ: \(x\in R\)

AH
Akai Haruma
Giáo viên
9 tháng 9 2021

Lời giải:

a.

\(A=\frac{(x\sqrt{x}-4x)-(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{x}-2)(\sqrt{x}-1)}\)

ĐKXĐ: \(\left\{\begin{matrix} x\geq 0\\ \sqrt{x}-4\neq 0\\ \sqrt{x}-2\neq 0\\ \sqrt{x}-1\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq 16\\ x\neq 4\\ x\neq 1\end{matrix}\right.\)

\(A=\frac{x(\sqrt{x}-4)-(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{2}-2)(\sqrt{x}-1)}=\frac{(x-1)(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{x}-2)(\sqrt{x}-1)}\)

\(=\frac{(\sqrt{x}-1)(\sqrt{x}+1)(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{x}-2)(\sqrt{x}-1)}=\frac{\sqrt{x}+1}{2(\sqrt{x}-2)}\)

b.

Với $x$ nguyên, để $A\in\mathbb{Z}$ thì $\sqrt{x}+1\vdots 2(\sqrt{x}-2)}$

$\Rightarrow \sqrt{x}+1\vdots \sqrt{x}-2$
$\Leftrightarrow \sqrt{x}-2+3\vdots \sqrt{x}-2$

$\Leftrightarrow 3\vdots \sqrt{x}-2$

$\Rightarrow \sqrt{x}-2\in\left\{\pm 1;\pm 3\right\}$

$\Rightarrow x\in\left\{1;9;25\right\}$

Thử lại thấy đều thỏa mãn.

 

a: \(A=\dfrac{x\left(\sqrt{x}-4\right)-\left(\sqrt{x}-4\right)}{2x\sqrt{x}-8x-6x+24\sqrt{x}+4\sqrt{x}-16}\)

\(=\dfrac{\left(\sqrt{x}-4\right)\left(x-1\right)}{\left(\sqrt{x}-4\right)\left(2x-6\sqrt{x}+4\right)}=\dfrac{x-1}{2x-6\sqrt{x}+4}\)

\(=\dfrac{x-1}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{2\sqrt{x}-4}\)

b: Để A nguyên thì \(2\sqrt{x}+2⋮2\sqrt{x}-4\)

\(\Leftrightarrow2\sqrt{x}-4\in\left\{2;-2;6\right\}\)

hay \(x\in\left\{9;1;25\right\}\)