K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2023

e) \(2^x+2^{x+3}=144\)

\(=>2^x+2^x.2^3=144\)

\(=>2^x.\left(1+2^3\right)=144\)

\(=>2^x.9=144\)

\(=>2^x=144:9\)

\(=>2^x=16=2^4\)

\(=>x=4\)

__________

f) \(3^x+3^{x+1}=108\)

\(=>3^x+3^x.3=108\)

\(=>3^x.\left(1+3\right)=108\)

\(=>3^x.4=108\)

\(=>3^x=108:4\)

\(=>3^x=27=3^3\)

\(=>x=3\)

\(#Wendy.Dang\)

18 tháng 12 2021

Bài 1:

\(a,=6x^2+6x\\ b,=15x^3-10x^2+5x\\ c,=6x^3+12x^2\\ d,=15x^4+20x^3-5x^2\\ e,=2x^2+3x-2x-3=2x^2+x-3\\ f,=3x^2-5x+6x-10=3x^2+x-10\)

Bài 2:

\(a,\Leftrightarrow3x^2+3x-3x^2=6\\ \Leftrightarrow3x=6\Leftrightarrow x=2\\ b,\Leftrightarrow6x^2+3x-6x^2+9x-2x-3=10\\ \Leftrightarrow10x=13\Leftrightarrow x=\dfrac{13}{10}\)

Bài 1: Thực hiện phép tính:a) x(3x2 – 2x + 5)                  b) 1/3 x2 y2 (6x + 2/3x2 – y)c) ( 1/3x + 2)(3x – 6)             d) ( 1/3x + 2)(3x – 6)e) (x2 – 3x + 1)(2x – 5)          f) ( 1/2x + 3)(2x2 – 4x + 6)Bài 2: Tìm x, biết:a) 3(2x – 3) + 2(2 – x) = –3                        b) x(5 – 2x) + 2x(x – 1) = 13c) 5x(x – 1) – (x + 2)(5x – 7) = 6                d) 3x(2x + 3) – (2x + 5)(3x – 2) = 8Bài 3: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị...
Đọc tiếp

Bài 1: Thực hiện phép tính:

a) x(3x2 – 2x + 5)                  b) 1/3 x2 y2 (6x + 2/3x2 – y)

c) ( 1/3x + 2)(3x – 6)             d) ( 1/3x + 2)(3x – 6)

e) (x2 – 3x + 1)(2x – 5)          f) ( 1/2x + 3)(2x2 – 4x + 6)

Bài 2: Tìm x, biết:

a) 3(2x – 3) + 2(2 – x) = –3                        b) x(5 – 2x) + 2x(x – 1) = 13

c) 5x(x – 1) – (x + 2)(5x – 7) = 6                d) 3x(2x + 3) – (2x + 5)(3x – 2) = 8

Bài 3: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến: a) A = x(2x + 1) – x2 (x + 2) + x3 – x + 3     

b) B = (2x + 11)(3x – 5) – (2x + 3)(3x + 7) + 5 

Bài 4: Tính giá trị của biểu thức

a) A = 2x( 1/2x2 + y) – x(x2 + y) + xy(x3 – 1) tại x = 10; y = – 1 10

b) B = 3x2 (x2 – 5) + x(–3x3 + 4x) + 6x2 tại x = –5

3
17 tháng 9 2021

\(1,\\ a,=3x^3-2x^2+5x\\ b,=2x^3y^2+\dfrac{2}{9}x^4y^2-\dfrac{1}{3}x^2y^3\\ c,=x^2-2x+6x-12=x^2+4x-12\\ 2,\\ a,\Rightarrow6x-9+4-2x=-3\\ \Rightarrow4x=2\Rightarrow x=\dfrac{1}{2}\\ b,\Rightarrow5x-2x^2+2x^2-2x=13\\ \Rightarrow3x=13\Rightarrow x=\dfrac{13}{3}\\ c,\Rightarrow5x^2-5x-5x^2+7x-10x+14=6\\ \Rightarrow-8x=-8\Rightarrow x=1\\ d,\Rightarrow6x^2+9x-6x^2+4x-15x+10=8\\ \Rightarrow-2x=-2\Rightarrow x=1\)

 

17 tháng 9 2021

\(3,\\ A=2x^2+x-x^3-2x^2+x^3-x+3=3\\ B=6x^2-10x+33x-55-6x^2-14x-9x-21=-76\)

8 tháng 9 2021

\(a,3\left(2x-3\right)+2\left(2-x\right)=-3\\ \Leftrightarrow6x-9+4-2x=-3\\ \Leftrightarrow4x=2\\ \Leftrightarrow x=\dfrac{1}{2}\\ b,x\left(5-2x\right)+2x\left(x-1\right)=13\\ \Leftrightarrow5x-2x^2+2x^2-2x=13\\ \Leftrightarrow3x=13\\ \Leftrightarrow x=\dfrac{13}{3}\\ c,5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\\ \Leftrightarrow5x^2-5x-5x^2-3x+14=6\\ \Leftrightarrow-8x=-8\\ \Leftrightarrow x=1\\ d,3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\\ \Leftrightarrow6x^2+9x-6x^2-11x+10=8\\ \Leftrightarrow-2x=-2\\ \Leftrightarrow x=1\)

\(e,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ \Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ f,2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\\ \Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3-8=0\\ \Leftrightarrow-\left(x^3+8\right)=0\\ \Leftrightarrow-\left(x+2\right)\left(x^2-2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\left(x^2-2x+4=\left(x-1\right)^2+3>0\right)\end{matrix}\right.\)

Bài 4:

a: Ta có: \(3\left(2x-3\right)-2\left(x-2\right)=-3\)

\(\Leftrightarrow6x-9-2x+4=-3\)

\(\Leftrightarrow4x=2\)

hay \(x=\dfrac{1}{2}\)

b: Ta có: \(x\left(5-2x\right)+2x\left(x-1\right)=13\)

\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)

\(\Leftrightarrow3x=13\)

hay \(x=\dfrac{13}{3}\)

c: Ta có: \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)

\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)

\(\Leftrightarrow-8x=-8\)

hay x=1

a: x^3-7x-6

=x^3-x-6x-6

=x(x-1)(x+1)-6(x+1)

=(x+1)(x^2-x-6)

=(x-3)(x+2)(x+1)

b: =2x^3+x^2-2x^2-x+6x+3

=x^2(2x+1)-x(2x+1)+3(2x+1)

=(2x+1)(x^2-x+3)

c: =2x^3-3x^2-2x^2+3x+2x-3

=x^2(2x-3)-x(2x-3)+(2x-3)

=(2x-3)(x^2-x+1)

d: =2x^3+x^2+2x^2+x+2x+1

=(2x+1)(x^2+x+1)

e: =3x^3+x^2-3x^2-x+6x+2

=(3x+1)(x^2-x+2)

f: =27x^3-9x^2-18x^2+6x+12x-4

=(3x-1)(9x^2-6x+4)

29 tháng 8 2023

a) \(x^3-7x-6\)

\(=x^3-x-6x-6\)

\(=\left(x^3-x\right)-\left(6x+6\right)\)

\(=x\left(x^2-1\right)-6\left(x+1\right)\)

\(=x\left(x+1\right)\left(x-1\right)-6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x-6\right)\)

b) \(2x^3-x^2+5x+3\)

\(=2x^3+x^2-2x^2-x+6x+3\)

\(=\left(2x^3+x^2\right)-\left(2x^2+x\right)+\left(6x+3\right)\)

\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)

\(=\left(x^2-x+3\right)\left(2x+1\right)\)

c) \(2x^3-5x^2+5x+1\)

\(=2x^3-3x^2-2x^2+3x+2x-3\)

\(=\left(2x^3-3x^2\right)-\left(2x^2-3x\right)+\left(2x-3\right)\)

\(=x^2\left(2x-3\right)-x\left(2x-3\right)+\left(2x-3\right)\)

\(=\left(x^2-x+1\right)\left(2x-3\right)\)

d) \(2x^3+3x^2+3x+1\)

\(=2x^3+x^2+2x^2+x+2x+1\)

\(=\left(2x^3+x^2\right)+\left(2x^2+x\right)+\left(2x+1\right)\)

\(=x^2\left(2x+1\right)+x\left(2x+1\right)+\left(2x+1\right)\)

\(=\left(2x+1\right)\left(x^2+x+1\right)\)

e) \(3x^3-2x^2+5x+2\)

\(=3x^3+x^2-3x^2-x+6x+2\)

\(=\left(3x^3+x^2\right)-\left(3x^2+x\right)+\left(6x+2\right)\)

\(=x^2\left(3x+1\right)-x\left(3x+1\right)+2\left(3x+1\right)\)

\(=\left(3x-1\right)\left(x^2-x+2\right)\)

f) \(27x^3-27x^2+18x-4\)

\(=27x^3-9x^2-18x^2+6x+12x-4\)

\(=\left(27x^3-9x^2\right)-\left(18x^2-6x\right)+\left(12x-4\right)\)

\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)

\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)

\(c,10⋮2x+1\)

\(\Rightarrow2x+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

Ta có bảng 

2x+11-12-25-5-1010
2x0-21-34-6-119
x0-11/2-3/22-3-11/29/2

\(d,x+13⋮x+1\)

\(x+1+12⋮x+1\)

\(\Rightarrow x+1⋮x+1\)

\(\Rightarrow12⋮x+1\)

\(\Rightarrow x+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

Ta có bảng 

x+11-12-23-34-46-612-12
x0-21-32-43-55-711-13

Bn tự KL cả 2 phần ... 
 

\(f,2x+108⋮2x+3\)

\(\Rightarrow\left(2x+3\right)+105⋮2x+3\)

\(\Rightarrow2x+3⋮2x+3\)

\(\Rightarrow105⋮2x+3\)

\(\Rightarrow2x+3\inƯ\left(105\right)=\left\{\pm1;\pm3;\pm7;\pm15;\pm21;\pm35;\pm105\right\}\)

Ta lập bảng xét 

2x+31-13-37-715-1521-2135-35105-105
2x-2-40-64-1012-1818-24 32-38102-108
x-1-20-32-56-99-1216-1951-54

Tự KL ....

7 tháng 10 2021

a. (x2 + 4x + 4)

b. (1 - 4x + 4x2)

c. 9x2 - 1

d. x3 + 9

e. x3 + 3x24 + 19x + 64

f. x3 - 8

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Tìm min:

$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$

$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$

$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$

Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Tìm min

$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$

$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)

Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$

$\Leftrightarrow x=\frac{-1}{4}$