1/16+1/32-1/32+5/8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: A=1/3+1/9+...+1/3^10
=>3A=1+1/3+...+1/3^9
=>A*2=1-1/3^10=(3^10-1)/3^10
=>A=(3^10-1)/(2*3^10)
c: C=3/2+3/8+3/32+3/128+3/512
=>4C=6+3/2+...+3/128
=>3C=6-3/512
=>C=1023/512
d: A=1/2+...+1/256
=>2A=1+1/2+...+1/128
=>A=1-1/256=255/256
\(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{1+x+1-x}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2+2x^2+2-2x^2}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4+4x^4+4-4x^4}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{8+8x^8+8-8x^8}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{16+16x^{16}+16-16x^{16}}{1-x^{32}}=\dfrac{32}{1-x^{32}}\)
3/2+5/4+9/8/+17/16+33/32-6+x-1/x+1=31/32-2/2015
=(1+1/2)+(1+1/4)+(1+1/8)+(1+1/16)+(1+1/32-6+x-1/x+1=31/32-2/2015
=(1/2+1/4+1/8+1/16+1/32)+(1+1+1+1+1)-6+x-1/x+1=31/32-2/2015
=31/32+5-6+x-1/x+1=31/32-2/2015
=5-6+x-1/x+1=31/32-2/2015-31/32
=-1+x-1/x+1=-2/2015
=x-1/x+1=-2/2015- -1
=x-1/x+1=2013/2015
=>x=2014
Đặt \(A=1+\frac{5}{4}+\frac{5}{8}+\frac{5}{16}+\frac{5}{32}+\frac{5}{64}\)
\(=5\cdot\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)\)
Đặt \(B=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(\Rightarrow2\cdot B=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(\Rightarrow B=2\cdot B-B=1-\frac{1}{64}=\frac{63}{64}\)
\(\Rightarrow A=5\cdot\frac{63}{64}=\frac{315}{64}\)