A = (sqrt(4 + 2sqrt(3)) - 1)/(sqrt(4 + 2sqrt(3)) +2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{\sqrt{4+2\sqrt{3}}+1}{\sqrt{4+2\sqrt{3}}-1}\)
\(A=\dfrac{\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}\cdot1+1^2}+1}{\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}\cdot1+1^2}-1}\)
\(A=\dfrac{\sqrt{\left(\sqrt{3}+1\right)^2}+1}{\sqrt{\left(\sqrt{3}+1\right)^2}-1}\)
\(A=\dfrac{\left|\sqrt{3}+1\right|+1}{\left|\sqrt{3}+1\right|-1}\)
\(A=\dfrac{\sqrt{3}+1+1}{\sqrt{3}+1-1}\)
\(A=\dfrac{\sqrt{3}+2}{\sqrt{3}}\)
\(A=\dfrac{\sqrt{3}\cdot\left(\sqrt{3}+2\right)}{\sqrt{3}\cdot\sqrt{3}}\)
\(A=\dfrac{3+2\sqrt{3}}{3}\)
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn.
\(=\sqrt{5}-\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{2\left(\sqrt{5}-2\right)}=\sqrt{5}-\dfrac{\sqrt{5}}{2}=\dfrac{\sqrt{5}}{2}\)
=√5-\(\dfrac{\text{√}5\left(\text{√}5-2\right)}{2\left(\text{√}5-2\right)}\)=√5-\(\dfrac{\text{√5}}{2}\)=\(\dfrac{\text{√ 5}}{2}\)
1: =>x^2-x=3-x
=>x^2=3
=>x=căn 3 hoặc x=-căn 3
2: =>x^2-4x+3=x^2-4x+4 và x>=2
=>3=4(vô lý)
3: =>2|x-1|=6
=>|x-1|=3
=>x-1=3 hoặc x-1=-3
=>x=-2 hoặc x=4
4: =>|2x-3|=|x-2|
=>2x-3=x-2 hoặc 2x-3=-x+2
=>x=1 hoặc x=5/3
5: =>\(\sqrt{x+2}\left(\sqrt{x-2}+\sqrt{x+2}\right)=0\)
=>x+2=0
=>x=-2
\(=\dfrac{\sqrt{3}-1}{\sqrt{2}+1}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}=\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\dfrac{2}{1}=2\)
a: \(A=\dfrac{\left(\sqrt{7}+\sqrt{3}\right)^2+\left(\sqrt{7}-\sqrt{3}\right)^2}{4}\)
\(=\dfrac{10+2\sqrt{21}+10-2\sqrt{21}}{4}=\dfrac{20}{4}=5\)
b: \(B=6\sqrt{3}+\sqrt{3}-1-2\sqrt{2}\)
\(=7\sqrt{3}-2\sqrt{2}-1\)
\(A=\dfrac{\sqrt{4-2\sqrt{3}}-1}{\sqrt{4+2\sqrt{3}}+2}\)
\(A=\dfrac{\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot1+1^2}-1}{\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot1+1^2}+2}\)
\(A=\dfrac{\sqrt{\left(\sqrt{3}+1\right)^2}+1}{\sqrt{\left(\sqrt{3}+1\right)^2}-2}\)
\(A=\dfrac{\left|\sqrt{3}+1\right|+1}{\left|\sqrt{3}+1\right|-2}\)
\(A=\dfrac{\sqrt{3}+1+1}{\sqrt{3}+1-2}\)
\(A=\dfrac{\sqrt{3}+2}{\sqrt{3}-1}\)
\(A=\dfrac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(A=\dfrac{3+\sqrt{3}+2\sqrt{3}+2}{3-1}\)
\(A=\dfrac{5+3\sqrt{3}}{2}\)
A = \(\dfrac{5+3\sqrt{3}}{2}\)