Mình cần hỏi gấp:
Cho tam giác ABC, kẻ 3 đường trung tuyến AD, BE, CF. Từ F kẻ đg thẳng song song với AD cắt ED tại I
a) CM AF= DE
b)CM D là trung điểm EI
c) Kéo dài AD cắt CI tại K, gọi G là giao điểm của AD và BE. CM GE= 1/2 KC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BFGE có
BF//GE
BE//FG
=>BFGE là hbh
=>GE=BF
=>GE=AF
mà GE//AF
nên AGEF là hình bình hành
b: Xét ΔCAB cso CD/CB=CE/CA
nên DE//AB
=>D,E,G thẳng hàng
DE//AB
=>DE/AB=CD/CB=1/2
=>DE=AF=GE
=>E là trung điểm của DG
Xét tứ giác ADCG có
E là trung điểm chung của AC và DG
=>ADCG là hbh
=>CG=AD
a: Xét ΔABD và ΔEDB có
góc ABD=góc EDB
BD chung
góc ADB=góc EBD
=>ΔABD=ΔEDB
b: Xét tứ giác ABED có
AB//ED
AD//BE
=>ABED là hình bình hành
=>AE cắt BD tại trung điểm của mỗi đường
=>I là trung điểm của AE
=>IA=IE
c: ID=BI
=>ID=1/2BD
=>ID=1/2CD
=>CD=2/3CI
Xét ΔAEC có
CI là trung tuyến
CD=2/3AE
=>D là trọng tâm
mà K là trung điểm của EC
nên A,D,K thẳng hàng
a: Xét ΔCBA có
D,E lần lượt là trung điểm của CB,CA
=>DE là đường trung bình
=>DE//AB và DE=1/2AB=AF
b: DE//AB
mà I thuộc tia đối của tia DE
nên DI//AB
=>DI//AF
Xét tứ giác AFID có
AF//ID
AD//FI
Do đó: AFID là hình bình hành
=>DI=AF=DE
=>D là trung điểm của EI