Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BFGE có
BF//GE
BE//FG
=>BFGE là hbh
=>GE=BF
=>GE=AF
mà GE//AF
nên AGEF là hình bình hành
b: Xét ΔCAB cso CD/CB=CE/CA
nên DE//AB
=>D,E,G thẳng hàng
DE//AB
=>DE/AB=CD/CB=1/2
=>DE=AF=GE
=>E là trung điểm của DG
Xét tứ giác ADCG có
E là trung điểm chung của AC và DG
=>ADCG là hbh
=>CG=AD
a: Xét ΔABD và ΔEDB có
góc ABD=góc EDB
BD chung
góc ADB=góc EBD
=>ΔABD=ΔEDB
b: Xét tứ giác ABED có
AB//ED
AD//BE
=>ABED là hình bình hành
=>AE cắt BD tại trung điểm của mỗi đường
=>I là trung điểm của AE
=>IA=IE
c: ID=BI
=>ID=1/2BD
=>ID=1/2CD
=>CD=2/3CI
Xét ΔAEC có
CI là trung tuyến
CD=2/3AE
=>D là trọng tâm
mà K là trung điểm của EC
nên A,D,K thẳng hàng
( Bạn tự vẽ hình nha )
a) Xét tứ giác AEDF có :
DE // AB
DF // AC
=> AEDF là hình bình hành ( dấu hiệu nhận biết )
Xét hình bình hành AEDF có :
AD là phân giác của góc BAC
=> EFGD là hình thoi ( dấu hiệu nhận biết )
b) XÉt tứ giác EFGD có :
FG // ED ( AF //ED )
FG = ED ( AF = ED )
=> EFGD là hình bình hành ( dấu hiệu nhận biết )
c) Nối G với I
+) XÉt tứ giác AIGD có :
F là trung điểm của AG
F là trung điểm của ID
=> AIGD là hình bình hành ( dấu hiệu nhận biết )
=> GD // IA hay GD // AK ( tính chất )
+) Xét tứ giác AKDG có :
GD // AK
AG // Dk ( AF // ED )
=> AKDG là hình bình hành ( dấu hiệu )
+) xtes hinhnf bình hành AKDG có :
AD và GK là 2 đường chéo
=> AD và GK cắt nhau tại trung điểm mỗi đường
Mà O là trung điểm của AD ( vì AFDE là hình thoi )
=> O là trung điểm của GK
=> ĐPCM
a: Xét ΔCBA có
D,E lần lượt là trung điểm của CB,CA
=>DE là đường trung bình
=>DE//AB và DE=1/2AB=AF
b: DE//AB
mà I thuộc tia đối của tia DE
nên DI//AB
=>DI//AF
Xét tứ giác AFID có
AF//ID
AD//FI
Do đó: AFID là hình bình hành
=>DI=AF=DE
=>D là trung điểm của EI