K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2023

1)

\(\sqrt{-x}=2\\ \Leftrightarrow\sqrt{-1.x}=2\\\Leftrightarrow \sqrt{-1.x}=\sqrt{4}\\ \Leftrightarrow-1.x=4\\ \Leftrightarrow x=-4\)

Vậy \(S=\left\{-4\right\}\)

\(2)\sqrt{4x^2-4x+1}=3\\\Leftrightarrow \sqrt{\left(2x-1\right)^2}=3\\\Leftrightarrow\left|2x-1\right| =3\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{-1;2\right\}\)

30 tháng 8 2023

bổ xung tí

1) \(ĐK:-x\ge0\Leftrightarrow x\le0\)

\(2)4x^2-4x+1\ge0\Leftrightarrow\left(2x-1\right)^2\ge0\forall x\in R\)

NV
23 tháng 8 2021

\(P=\dfrac{y}{x}+\dfrac{x}{y}+\left(\dfrac{x}{3y}+3xy+\dfrac{1}{3}+\dfrac{1}{3}\right)+12\left(xy+\dfrac{1}{9}\right)-2\)

\(P\ge2\sqrt{\dfrac{xy}{xy}}+4\sqrt[4]{\dfrac{3x^2y}{27y}}+12.2\sqrt{\dfrac{xy}{9}}-2\)

\(P\ge4\sqrt{\dfrac{x}{3}}+8\sqrt{xy}=4\left(2\sqrt{xy}+\sqrt{\dfrac{x}{3}}\right)=4\)

\(P_{min}=4\) khi \(x=y=\dfrac{1}{3}\)

NV
30 tháng 12 2021

\(\sqrt{4x+2\sqrt{x}+1}\le\sqrt{4x+\dfrac{1}{2}\left(2^2+x\right)+1}=\sqrt{\dfrac{9x}{2}+3}\)

\(=\dfrac{1}{\sqrt{21}}.\sqrt{21}.\sqrt{\dfrac{9x}{2}+3}\le\dfrac{1}{2\sqrt{21}}\left(21+\dfrac{9x}{2}+3\right)=\dfrac{1}{2\sqrt{21}}\left(\dfrac{9x}{2}+24\right)\)

Tương tự và cộng lại:

\(A\le\dfrac{1}{2\sqrt{21}}\left(\dfrac{9}{2}\left(x+y+z\right)+72\right)=3\sqrt{21}\)

\(A_{max}=3\sqrt{21}\) khi \(x=y=z=4\)

30 tháng 12 2021

\(A=1\sqrt{4x+2\sqrt{x}+1}+1.\sqrt{4y+2\sqrt{y}+1}+1\sqrt{4z+2\sqrt{z}+1}\)

\(\le\sqrt{\left(1+1+1\right)\left(4\left(x+y+z\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\right)}\)

\(=\sqrt{3.\left[51+\dfrac{4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{2}\right]}\)

\(\le\sqrt{3.\left[51+\dfrac{x+y+z+12}{2}\right]}\)

\(=\sqrt{189}\)

Dấu "=" xảy ra <=> x = y = z = 4

2 tháng 10 2016

a)\(\sqrt{\frac{2x-3}{x-1}}=2\RightarrowĐk:\frac{2x-3}{x-1}\ge0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x\ge\frac{3}{2}\\x< 1\end{array}\right.\)

\(\sqrt{\frac{2x-3}{x-1}}=2\Rightarrow\frac{2x-3}{x-1}=4\)

\(\Leftrightarrow2x-3=4\left(x-1\right)\Leftrightarrow2x-3=4x-4\)

\(\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)(nhận)

b)\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\RightarrowĐk:\begin{cases}2x-3\ge0\\x-1>0\end{cases}\)

\(\Leftrightarrow x\ge\frac{3}{2}\)

\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow\sqrt{2x-3}=2\sqrt{x-1}\)

\(\Leftrightarrow2x-3=4x-4\)\(\Leftrightarrow x=\frac{1}{2}\)(loại)

c)\(\sqrt{\frac{4x+3}{x+1}}=3\RightarrowĐk:\frac{4x+3}{x+1}\ge0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x\ge\frac{-3}{4}\\x< -1\end{array}\right.\)

\(\sqrt{\frac{4x+3}{x+1}}=3\Rightarrow\frac{4x+3}{x+1}=9\)

\(\Leftrightarrow4x+3=9\left(x+1\right)\Leftrightarrow4x+3=9x+9\)

\(\Leftrightarrow5x=-6\Leftrightarrow x=\frac{-6}{5}\)(nhận)

c)\(\frac{\sqrt{4x+3}}{\sqrt{x+1}}=3\RightarrowĐk:\begin{cases}4x+3\ge0\\x+1>0\end{cases}\)

\(\Rightarrow x\ge\frac{-3}{4}\)

\(\frac{\sqrt{4x+3}}{\sqrt{x+1}}=3\Rightarrow\sqrt{4x+3}=3\sqrt{x+1}\)

\(\Leftrightarrow4x+3=9\left(x+1\right)\Leftrightarrow4x+3=9x+9\)

\(\Leftrightarrow x=\frac{-6}{5}\)(loại)

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

Căn bậc hai. Căn bậc ba

7 tháng 7 2018

\(\left(\sqrt{x^2-4x+5}\right)\) \(+\left(\sqrt{9y^2-6y+1}\right)\)\(=1\)

<=>\(\left(\sqrt{\left(x-2\right)^2+1}\right)\) \(+\sqrt{\left(3y-1\right)^2}\)\(=1\)

<=>\(\left(x-2\right)^2+1+\left(3y-1\right)^2\) \(=1\)

<=>\(\left(x-2\right)^2+\left(3y-1\right)^2=0\)

<=>\(\orbr{\begin{cases}\left(x-2\right)^2=0\\\left(3y-1\right)^2=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=2\\y=\frac{1}{3}\end{cases}}\)

8 tháng 8 2016

a) Cách 1:

\(pt\Leftrightarrow\hept{\begin{cases}y\ge0\\y^2=\left(x+2\right)^2+1\text{ (1)}\end{cases}}\)

\(\left(1\right)\Leftrightarrow\left[y+x+2\right]\left[y-\left(x+2\right)\right]=1\)

\(\Leftrightarrow\left(y+x+2\right)\left(y-x-2\right)=1\)

\(\Rightarrow\hept{\begin{cases}y+x+2=1\\y-x-2=1\end{cases}}\)hoặc \(\hept{\begin{cases}y+x+2=-1\\y-x-2=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)(nhận) hoặc \(\hept{\begin{cases}x=-2\\y=-1\end{cases}}\)(loại)

Cách 2: Để y nguyên thì biểu thức trong căn phải là một số chính phương

\(A=x^2+4x+5=\left(x+2\right)^2+1=t^2+1\)

+Với \(t=0\) thì \(A=1=1^2\), là một số chính phương --> thỏa

+Với \(t>0\), ta có: \(t^2< t^2+1< \left(t+1\right)^2\)(chứng minh bằng biến đổi tương đương)

A là một số nằm giữa hai số chính phương liên tiếp nên A ko thể là số chính phương --> loại

+Với \(t< 0\) thì \(t^2< t^2+1< \left(t-1\right)^2\)(chứng minh bằng biến đổi tương đương)

A là một số nằm giữa hai số chính phương liên tiếp nên A ko thể là số chính phương --> loại

Vậy t chỉ có thể bằng 0;

\(t=0\Leftrightarrow\hept{\begin{cases}x+2=0\\y=\sqrt{0^2+1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)

8 tháng 8 2016

a/ y= (x+2)2 +1 <=> (y-x-2)(y+x+2)=1 vì x,y nguyên nên 2 đa thức ở vế trái cùng bằng 1 hoặc -1

2 tháng 8 2020

em mới lớp 6-7 nên em sẽ giải theo kiểu lớp 6 là

2 tháng 8 2020

em ko biết giải khó quá trời