Căn bậc 2 của 16 là bao nhiêu ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Ta có: \(A=\frac{\sqrt{x+1}}{\sqrt{x-1}}\)
- Thay \(x=\frac{16}{9}\)vào đa thức \(A,\)ta có:
\(A=\frac{\sqrt{\frac{16}{9}+1}}{\sqrt{\frac{16}{9}-1}}\)
\(\Leftrightarrow A=\frac{\sqrt{\frac{25}{9}}}{\sqrt{\frac{7}{9}}}\)
\(\Leftrightarrow A=\frac{5\sqrt{7}}{7}\)
Vậy \(A=\frac{5\sqrt{7}}{7}\)
Thay x = 16/9 vào biểu thức, ta có:
\(\frac{\sqrt{\frac{16}{9}+1}}{\sqrt{\frac{16}{9}-1}}=\frac{\sqrt{\frac{25}{9}}}{\sqrt{\frac{7}{9}}}=\frac{\frac{5}{3}}{\frac{\sqrt{7}}{3}}=\frac{5\sqrt{7}}{5}\)
a: \(\dfrac{\sqrt{81}}{\sqrt{16}}=\dfrac{9}{4}=\dfrac{36}{16}< \dfrac{81}{16}\)
b: \(\sqrt{16+25}=\sqrt{41}< 9=\sqrt{16}+\sqrt{25}\)
Trả lời:
\(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(=\sqrt{45-12\sqrt{5}+4}-\sqrt{45+12\sqrt{5}+4}\)
\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(=3\sqrt{5}-2-3\sqrt{5}-2\)
\(=-4\)
Học tốt
\(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(=\sqrt{45-12\sqrt{5}+4}-\sqrt{45+12\sqrt{5}+4}\)
\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(=|3\sqrt{5}-2|-|3\sqrt{5}+2|\)
\(=3\sqrt{5}-3\sqrt{5}-4=-4\)
\(\sqrt{16}=4\)