D=8+8^3+8^5+...+8^2x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3\left(2x-3\right)+2\left(2-x\right)=-3\\ \Leftrightarrow6x-9+4-2x=-3\\ \Leftrightarrow4x=2\\ \Leftrightarrow x=\dfrac{1}{2}\\ b,x\left(5-2x\right)+2x\left(x-1\right)=13\\ \Leftrightarrow5x-2x^2+2x^2-2x=13\\ \Leftrightarrow3x=13\\ \Leftrightarrow x=\dfrac{13}{3}\\ c,5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\\ \Leftrightarrow5x^2-5x-5x^2-3x+14=6\\ \Leftrightarrow-8x=-8\\ \Leftrightarrow x=1\\ d,3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\\ \Leftrightarrow6x^2+9x-6x^2-11x+10=8\\ \Leftrightarrow-2x=-2\\ \Leftrightarrow x=1\)
\(e,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ \Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ f,2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\\ \Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3-8=0\\ \Leftrightarrow-\left(x^3+8\right)=0\\ \Leftrightarrow-\left(x+2\right)\left(x^2-2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\left(x^2-2x+4=\left(x-1\right)^2+3>0\right)\end{matrix}\right.\)
Bài 4:
a: Ta có: \(3\left(2x-3\right)-2\left(x-2\right)=-3\)
\(\Leftrightarrow6x-9-2x+4=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
b: Ta có: \(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
\(\Leftrightarrow3x=13\)
hay \(x=\dfrac{13}{3}\)
c: Ta có: \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
\(\Leftrightarrow-8x=-8\)
hay x=1
Giải:
a) \(\dfrac{-5}{6}-x=\dfrac{7}{12}+\dfrac{-1}{3}\)
\(\dfrac{-5}{6}-x=\dfrac{1}{4}\)
\(x=\dfrac{-5}{6}-\dfrac{1}{4}\)
\(x=\dfrac{-13}{12}\)
b) \(2.\left(x-\dfrac{1}{3}\right)=\left(\dfrac{1}{3}\right)^2+\dfrac{5}{9}\)
\(2.\left(x-\dfrac{1}{3}\right)=\dfrac{1}{9}+\dfrac{5}{9}\)
\(2.\left(x-\dfrac{1}{3}\right)=\dfrac{2}{3}\)
\(x-\dfrac{1}{3}=\dfrac{2}{3}:2\)
\(x-\dfrac{1}{3}=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}+\dfrac{1}{3}\)
\(x=\dfrac{2}{3}\)
c) \(\left|2x-\dfrac{3}{4}\right|-\dfrac{3}{8}=\dfrac{1}{8}\)
\(\left|2x-\dfrac{3}{4}\right|=\dfrac{1}{8}+\dfrac{3}{8}\)
\(\left|2x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}2x-\dfrac{3}{4}=\dfrac{1}{2}\\2x-\dfrac{3}{4}=\dfrac{-1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{8}\\x=\dfrac{1}{8}\end{matrix}\right.\)
d) \(\dfrac{2}{3}x+\dfrac{1}{6}x=3\dfrac{5}{8}\)
\(x.\left(\dfrac{2}{3}+\dfrac{1}{6}\right)=\dfrac{29}{8}\)
\(x.\dfrac{5}{6}=\dfrac{29}{8}\)
\(x=\dfrac{29}{8}:\dfrac{5}{6}\)
\(x=\dfrac{87}{20}\)
a) -3x+4+5x=-10-x
-3x+4+5x+10+x=0
(-3x+5x+x)+10=0
3x+10=0
3x=-10
x=\(\dfrac{-10}{3}\)
Vậy x=\(\dfrac{-10}{3}\)
b)-x+1=-3x-8
-x+1+3x+8=0
(-x+3x)+(1+8)=0
2x+9=0
2x=-9
x=\(\dfrac{-9}{2}\)
Vậy x=\(\dfrac{-9}{2}\)
c)8-(x-1)=10+(x+5)
8-x+1=10+x+5
9-x=15+x
9-x-15-x=0
(9-15)-(x+x)=0
-6-2x=0
2x=-6
x=-3
Vậy x=-3
d)100+(x+7)-(-2x+3)=8+(x+100)
100+x+7+2x-3=8+x+100
(x+2x)+(100+7-3)=(8+100)+x
3x+104=108+x
3x+104-108-x=0
(3x-x)+(104-108)=0
2x-4=0
2x=4
x=2
Vậy x=2
e, \(\left|2x+5\right|=\left|x-1\right|\)
\(\Rightarrow\left\{{}\begin{matrix}2x+5=1-x\\2x+5=x-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=-4\\x=-6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{3}\\x=-6\end{matrix}\right.\)
g, \(\left|-x+4\right|=\left|-3x-8\right|\)
\(\Rightarrow\left\{{}\begin{matrix}-x+4=3x+8\\-x+4=-3x-8\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-4x=4\\2x=-12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)
h, \(\left|x+4\right|=\left|-3-8\right|\)
\(\Rightarrow\left|x+4\right|=\left|-11\right|=11\)
\(\Rightarrow\left\{{}\begin{matrix}x+4=-11\\x+4=11\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-15\\x=7\end{matrix}\right.\)
Chúc bạn học tốt!!!
Lời giải:
a.
$\frac{-2}{3}+2x=\frac{4}{3}$
$2x=\frac{4}{3}-\frac{-2}{3}=2$
$x=2:2=1$
b.
$\frac{5}{8}-5:x=\frac{-3}{8}$
$5:x=\frac{5}{8}-\frac{-3}{8}=1$
$x=5:1=5$
c.
$\frac{2}{3}-x=\frac{-1}{2}$
$x=\frac{2}{3}-\frac{-1}{2}=\frac{7}{6}$
d.
$\frac{5}{7}-4x=\frac{-51}{7}$
$4x=\frac{5}{7}-\frac{-51}{7}=8$
$x=8:4=2$
`@` `\text {Ans}`
`\downarrow`
`a,`
`-2/3 + 2x = 4/3`
`=> 2x = 4/3 - (-2/3)`
`=> 2x = 2`
`=> x=2 \div 2`
`=> x=1`
Vậy, `x=1`
`b,`
`5/8 - 5 : x = -3/8`
`=> 5 \div x = 5/8 - (-3/8)`
`=> 5 \div x = 1`
`=> x= 5 \div 1`
`=> x=5`
Vậy, `x=5`
`c,`
`2/3 - x = -1/2`
`=> x=2/3 - (-1/2)`
`=> x=7/6`
Vậy, `x=7/6`
`d,`
`5/7 - 4x = -51/7`
`=> 4x = 5/7 - (-51/7)`
`=> 4x=8`
`=> x=8 \div 4`
`=> x=2`
Vậy, `x=2.`
`@` `\text {Kaizuu lv u}`
a) ĐKXĐ: \(x\notin\left\{-1;0\right\}\)
Ta có: \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)
\(\Leftrightarrow\dfrac{x\left(x+3\right)}{x\left(x+1\right)}+\dfrac{\left(x+1\right)\left(x-2\right)}{x\left(x+1\right)}=\dfrac{2x\left(x+1\right)}{x\left(x+1\right)}\)
Suy ra: \(x^2+3x+x^2-3x+2=2x^2+2x\)
\(\Leftrightarrow2x^2+2-2x^2-2x=0\)
\(\Leftrightarrow-2x+2=0\)
\(\Leftrightarrow-2x=-2\)
hay x=1(nhận)
Vậy: S={1}
b) ĐKXĐ: \(x\notin\left\{-7;\dfrac{3}{2}\right\}\)
Ta có: \(\dfrac{3x-2}{x+7}=\dfrac{6x+1}{2x-3}\)
\(\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=\left(6x+1\right)\left(x+7\right)\)
\(\Leftrightarrow6x^2-9x-4x+6=6x^2+42x+x+7\)
\(\Leftrightarrow6x^2-13x+6-6x^2-43x-7=0\)
\(\Leftrightarrow-56x-1=0\)
\(\Leftrightarrow-56x=1\)
hay \(x=-\dfrac{1}{56}\)(nhận)
Vậy: \(S=\left\{-\dfrac{1}{56}\right\}\)
c) ĐKXĐ: \(x\ne-\dfrac{2}{3}\)
Ta có: \(\dfrac{5}{3x+2}=2x-1\)
\(\Leftrightarrow5=\left(3x+2\right)\left(2x-1\right)\)
\(\Leftrightarrow6x^2-3x+4x-2-5=0\)
\(\Leftrightarrow6x^2+x-7=0\)
\(\Leftrightarrow6x^2-6x+7x-7=0\)
\(\Leftrightarrow6x\left(x-1\right)+7\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(6x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\6x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\6x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-\dfrac{7}{6}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{1;-\dfrac{7}{6}\right\}\)
d) ĐKXĐ: \(x\ne\dfrac{2}{7}\)
Ta có: \(\left(2x+3\right)\cdot\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)
\(\Leftrightarrow\left(2x+3\right)\cdot\left(\dfrac{3x+8+2-7x}{2-7x}\right)-\left(x-5\right)\left(\dfrac{3x+8+2-7x}{2-7x}\right)=0\)
\(\Leftrightarrow\left(2x+3-x+5\right)\cdot\dfrac{-4x+6}{2-7x}=0\)
\(\Leftrightarrow\left(x+8\right)\cdot\left(-4x+6\right)=0\)(Vì \(2-7x\ne0\forall x\) thỏa mãn ĐKXĐ)
\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\-4x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\-4x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\left(nhận\right)\\x=\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{-8;\dfrac{3}{2}\right\}\)
a) \(\dfrac{x}{5}=\dfrac{2}{5}\)
\(\Rightarrow5x=10\)
\(\Leftrightarrow x=2\)
Vậy x = 2
b) ĐKXĐ: \(x\ne0\)
\(\dfrac{3}{-8}=\dfrac{6}{-x}\)
\(\Rightarrow-3x=-48\)
\(\Leftrightarrow x=16\)
Vậy x = 16
c) \(\dfrac{1}{9}=\dfrac{-2x}{10}\)
\(\Rightarrow-18x=10\)
\(\Leftrightarrow x=-\dfrac{5}{9}\)
Vậy \(x=-\dfrac{5}{9}\)
d) ĐKXĐ: \(x\ne0\)
\(\dfrac{3}{x}-5=\dfrac{-9}{x}+2\)
\(\Leftrightarrow\dfrac{3-5x}{x}=\dfrac{-9+2x}{x}\)
\(\Rightarrow3-5x=-9+2x\)
\(\Leftrightarrow7x=12\)
\(\Leftrightarrow x=\dfrac{12}{7}\)
Vậy \(x=\dfrac{12}{7}\)
e) ĐKXĐ: \(x\ne0\)
\(\dfrac{x}{-2}=\dfrac{-8}{x}\)
\(\Rightarrow x^2=16\)
\(\Leftrightarrow x=\pm4\)
Vậy \(x=\pm4\)
a) Ta có: \(\dfrac{x}{5}=\dfrac{2}{5}\)
\(\Leftrightarrow x=\dfrac{2\cdot5}{5}=2\)
Vậy: x=2
b) Ta có: \(\dfrac{3}{-8}=\dfrac{6}{-x}\)
\(\Leftrightarrow-x=\dfrac{6\cdot\left(-8\right)}{3}=-16\)
hay x=16
Vậy: x=16
a, \(\dfrac{x}{2}+\dfrac{3x}{4}=\dfrac{4}{5}\Leftrightarrow\dfrac{10x+15x}{20}=\dfrac{16}{20}\Rightarrow25x=16\Leftrightarrow x=\dfrac{16}{25}\)
b, \(\dfrac{3}{7}.\dfrac{5}{8}-\dfrac{3}{8}.\dfrac{13}{8}+\dfrac{1}{7}=\dfrac{15}{56}-\dfrac{39}{64}+\dfrac{1}{7}\)
\(=\dfrac{120}{448}-\dfrac{273}{448}+\dfrac{64}{448}=-\dfrac{89}{448}\)
Bài này thiếu dữ kiện