bài 1
a) tìm nghiệm của đa thức 2x2 +3x
b) cho A(x)= 2x2 - 2x - 24 ; B(x)=2x2 +3x - 29
Tìm x sao cho A (x)=B(x)
bài2
Tính giá trị của đa thức B=12x2 +20x + 1 biết x thỏa mãn 3x2 +5x - 2 =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 4: b, đề bài là tính giá trị của A tại x =-1/2;y=-1
Tk
Bài 2
a) F(x)-G(x)+H(x)= \(x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)
= \(x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)
= \(x^3-x^3-2x^2+2x^2+3x-x+1+1-1\)
= 2x + 1
b) 2x + 1 = 0
2x = -1
x=\(\dfrac{-1}{2}\)
a) cho f(x )=0
\(=>2x^2-x=0=>x\left(2x-1\right)=0\)
\(=>\left[{}\begin{matrix}x=0\\2x=1\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
b)cho \(f\left(2\right)+g\left(2\right)=0\)
\(=>2.2^2-2+m.2^2+2m+1=0\)
\(8-2+4m+2m+1=0\)
\(6+2m\left(2+1\right)+1=0\)
\(6+6m=-1\)
\(6m=-7=>m=-\dfrac{7}{6}\)
Lời giải:
a)
$P(x)+Q(x)=4x^2+x-5+5x^3-2x^2+2x-1=5x^3+2x^2+3x-6$
b)
$H(x)=P(x)+ax=4x^2+x-5+ax=4x^2+x(a+1)-5$
c) Để $H(x)$ có nghiệm $x=2$
$\Leftrightarrow H(2)=0$
$\Leftrightarrow 4.2^2+2(a+1)-5=0$
$\Leftrightarrow a=\frac{-13}{2}$
a) P(x) = 5x5 - 4x2 + 7x + 15
Q(x) = 5x5 - 4x2 + 3x + 8
b) Có: P(x) - Q(x) = 4x + 7
P(x) - Q(x) = 0 <=> x = \(-\dfrac{-7}{4}\)
`a,```P(x) = 8x^5 +7x -6x^2 -3x^5 +2x^2+15`
`= (8x^5 -3x^5 ) +(-6x^2+2x^2) +7x+15`
`=5x^5 -4x^2 +7x+15`
`Q(x) =4x^5 +3x-2x^2 +x^5 -2x^2+8`
`=(4x^5+x^5) +(-2x^2 -2x^2)+3x+8`
`= 5x^5 - 4x^2 +3x+8`
`b, P(x) -Q(x)=(5x^5 -4x^2 +7x+15)-(5x^5 - 4x^2 +3x+8)`
`= 5x^5 -4x^2 +7x+15-5x^5 +4x^2 -3x-8`
`= (5x^5-5x^5)+(-4x^2+4x^2) +(7x-3x)+(15-8)`
`= 0 + 0 +4x + 7`
`=4x+7`
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
a: \(A=-5x^3+9x^3-2x^2-2x^2+x-x+1\)
\(=4x^3-4x^2+1\)
\(B=-4x^3+2x^3-2x^2+2x^2+6x-9x-2\)
\(=-2x^3-3x-2\)
\(C=x^3-6x^2+2x-4\)
b: \(A\left(x\right)+B\left(x\right)-C\left(x\right)\)
\(=4x^3-4x^2+1-2x^3-3x-2+x^3-6x^2+2x-4\)
\(=3x^3-10x^2-x-4\)
\(\text{a)}f\left(x\right)-g\left(x\right)+h\left(x\right)=\left(x^3-2x^2+3x+1\right)-\left(x^3+x-1\right)+\left(2x^2-1\right)\)
\(=x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)
\(=\left(x^3-x^3\right)+\left(-2x^2+2x^2\right)+\left(3x-x\right)+\left(1+1-1\right)\)
\(=2x+1\)
\(\text{b)Vì f(x)-g(x)+h(x)=0}\)
\(\Rightarrow2x+1=0\)
\(\Rightarrow2x\) \(=0-1=-1\)
\(\Rightarrow\) \(x\) \(=\left(-1\right):2=\dfrac{-1}{2}\)
\(\text{Vậy x=}\dfrac{-1}{2}\text{ thì f(x)-g(x)+h(x)=0}\)
a: \(f\left(x\right)-g\left(x\right)+h\left(x\right)\)
\(=2x^3-2x^2+4x+2x^2-1=2x^3+4x-1\)
b: f(x)-g(x)+h(x)=0
\(\Leftrightarrow2x^3+4x-1=0\)
\(\Leftrightarrow x\simeq0,2428\)
`1)`
`A(x)=x^3-2x^2+5x-2-x^3+x+7`
`A(x)=(x^3-x^3)-2x^2+(5x+x)+(-2+7)`
`A(x)=-2x^2+6x+5`
Bậc của đa thức: `2`
Hệ số cao nhất: `-2`
Hệ số tự do: `5`
`2)`
`H(x)-(2x^2 + 3x – 10) = A(x)`
`H(x)-(2x^2 + 3x – 10)=-2x^2+6x+5`
`H(x)= (-2x^2+6x+5)+(2x^2 + 3x – 10)`
`H(x)=-2x^2+6x+5+2x^2 + 3x – 10`
`H(x)=(-2x^2+2x^2)+(6x+3x)+(5-10)`
`H(x)=9x-5`
`3)`
Đặt `9x-5=0`
`9x=0+5`
`9x=5`
`-> x=5/9`
a) Ta có : 2x2 + 3x = 0
<=> x(2x + 3) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{2}\end{cases}}\)