Cho \(S=1+2+2^{2+}2^3+..+2^{29}\)
So sánh : So sánh S vs \(5.2^8\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,2 dễ ko làm
3,
S = 1 + 2 + 22 + 23 + ... + 29
2S = 2 + 22 + 23 + 24 + ... + 210
2S - S = ( 2 + 22 + 23 + 24 + ... + 210 ) - ( 1 + 2 + 22 + 23 + ... + 29 )
S = 210 - 1
Mà 5 . 28 = ( 1 + 22 ) . 28 = 28 + 210 > 210 > 210 - 1
Vậy S < 5 . 28
P = 1 + 3 + 32 + 33 + ... + 320
3P = 3 + 32 + 33 + 34 + ... + 321
3P - P = ( 3 + 32 + 33 + 34 + ... + 321 ) - ( 1 + 3 + 32 + 33 + ... + 320 )
2P = 321 - 1
P = ( 321 - 1 ) : 2 < 321
Vậy P < 321
\(S=1+2+2^2+...+2^9\)
\(2S=\left(1+2+2^2+...+2^9\right).2\)
\(2S=2+2^2+2^3+...+2^{10}\)
\(2S-S=\left(2+2^2+2^3+...+2^{10}\right)\)\(-\left(1+2+2^2+...+2^9\right)\)
\(S=2^{10}-1\)
\(\Rightarrow S=2^8.4-1\)
Vì\(4.2^8< 5.2^8\Rightarrow S< 5.2^8\)
2S=2(1+2+22+...+29)
2S=2+22+...+210
2S-S=(2+22+...+210)-(1+2+22+...+29)
S=210-1=1024-1=1023
5*28=5*256=1280.Vì 1280>1023
=>5*28>210-1 <=> 5*28>S
2S=2(1+2+22+23+..+29)
2S=2+22+...+210
2S-S=(2+22+...+210)-(1+2+22+23+..+29)
S=210-1 (tới đây tách ra làm như Trinh Hai Nam)
\(2S=2+2^2+2^3+2^4+...+2^{10}\)
=> \(2S-S=\left(2+2^2+2^3+2^4+...+2^{10}\right)-\left(1+2+2^2+2^3+...+2^9\right)\)
=> \(S=2^{10}-1=1024-1=1023\)
Mà \(5.2^8=5.256=1280\)
Vì 1023 < 1280
=> \(S<5.2^8\).
Ta có :
2S=2+2^2+2^3+...+2^10
2S-S=2+2^2+2^3+...+2^10-1-2-2^2-...-2^9
S=2^10-1
=>S<2^10 (1)
Ta lại có :
5.2^8>2^10 (2)
Tu (1) va (2) suy ra : S<5.2^8
****
\(S=1+2+2^2+2^3+....+2^8+2^9.\)
\(\Rightarrow2S=\text{}2+2^2+2^3+....+2^8+2^9+2^{10}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+....+2^8+2^9+2^{10}\right)-\left(1+2+2^2+2^3+....+2^8+2^9\right)\)
\(S=2^{10}-1=1024-1=1023< 5\cdot2^8=5\cdot256=1280\)
=> 2S= 2+2^2+2^3+....+2^29+2^30
=> 2S-S = (2+2^2+2^3+....+2^29+2^30)-(1+2+2^2+2^3+....+2^29)
=> S=2^30-1 (đây là cách tính S, trong bài này không cần thiết)
Ta có: 5.2^8 = 2^8+2^8+2^8+2^8+2^8
Trong S nhất định có tổng 2^8+2^9+2^10+2^11+2^12 > 2^8+2^8+2^8+2^8+2^8
nên S>5.2^8