Cho 4x = 3y và x^2.y^2=144. Tính x^3-y^3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#3107.101117`
a)
`x \div y \div z = 4 \div 3 \div 9`
`=> x/4 = y/3 = z/9`
`=> x/4 = (3y)/9 = (4z)/36`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/4 = (3y)/9 = (2z)/8 = (x - 3y + 4z)/(4 - 9 + 36) = 62/31 = 2`
`=> x/4 = y/3 = z/9 = 2`
`=> x = 4*2 = 8` $\\$ `y = 3*2 = 6` $\\$ `z = 9*2 = 18`
Vậy, `x = 8; y = 6; z = 18`
c)
\(x \div y \div z = 1 \div 2 \div 3\)
`=> x/1 = y/2 = z/3`
`=> (4x)/4 = (3y)/6 = (2z)/6`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(4x)/4 = (3y)/6 = (2z)/6 = (4x - 3y + 2z)/(4 - 6 + 6) = 36/4 = 9`
`=> x/1 = y/2 = z/3 = 9`
`=> x = 1*9=9` $\\$ `y = 2*9 = 18` $\\$ `z = 3*9 = 27`
Vậy, `x = 9; y = 18; z = 27`
Các câu còn lại cậu làm tương tự nhé.
Vì \(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\)
Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)
Ta có : x2.y2 = 144
=> (xy)2 = 122
=> (12.k2)2 =122
=> 122.k4 = 122
=> k4 = 1
=> k = \(\pm\)1
=> Nếu k = 1 => x = 4 ; y = 3
Nếu k = - 1 => x = - 4 ; y = - 3
Từ: 4x=3y=>=\(\frac{x}{3}\)=\(\frac{y}{4}\)
Đặt: \(\frac{x}{3}\)=\(\frac{y}{4}\)=k=> x=3k; y=4k
mà x^2*y^2=144
=>(3k)^2*(4k)^2=144
=>9k^2*8k^2=144
=>k^2=144:(8*9)
=>k^2=2
=>k=\(\sqrt{2}\);\(-\sqrt{2}\)
bn tự tìm x;y nhé
kick mk nha
Bài 3:
3: \(6x\left(x-y\right)-9y^2+9xy\)
\(=6x\left(x-y\right)+9xy-9y^2\)
\(=6x\left(x-y\right)+9y\left(x-y\right)\)
\(=\left(x-y\right)\left(6x+9y\right)\)
\(=3\left(2x+3y\right)\left(x-y\right)\)
Bài 4:
c) Ta có: \(P=x^3+y^3+6xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+6xy\)
\(=\left(x+y\right)^3-3xy\left(x+y-2\right)\)
\(=2^3=8\)
1) \(x:y:z=2:3:4\) ⇒ \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\)
⇒ x=4;y=6;z=8
\(1,\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Áp dụng t/c dtsbn
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\\ \Rightarrow\left\{{}\begin{matrix}x=2\cdot2=4\\y=2\cdot3=6\\z=2\cdot4=8\end{matrix}\right.\)
\(2,\) Áp dụng t/c dtsbn
\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{4}=\dfrac{4x}{8}=\dfrac{3y}{-9}=\dfrac{2z}{8}=\dfrac{4x-3y-2z}{8-\left(-9\right)-8}=\dfrac{81}{9}=9\\ \Rightarrow\left\{{}\begin{matrix}x=2\cdot9=18\\y=2\cdot\left(-3\right)=-6\\z=2\cdot4=8\end{matrix}\right.\)
\(3,4y=3z\Rightarrow\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{y}{6}=\dfrac{z}{8};\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{9}=\dfrac{y}{6}\\ \Rightarrow\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{8}\)
Áp dụng t/c dtsbn
\(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{8}=\dfrac{x+y+z}{9+6+8}=\dfrac{46}{23}=2\\ \Rightarrow\left\{{}\begin{matrix}x=2\cdot9=18\\y=2\cdot6=12\\z=2\cdot8=16\end{matrix}\right.\)
\(4,5x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\Rightarrow\dfrac{x}{9}=\dfrac{y}{15};\dfrac{y}{z}=\dfrac{3}{2}\Rightarrow\dfrac{y}{3}=\dfrac{z}{2}\Rightarrow\dfrac{y}{15}=\dfrac{z}{10}\\ \Rightarrow\dfrac{x}{9}=\dfrac{y}{15}=\dfrac{z}{10}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{9}=\dfrac{y}{15}=\dfrac{z}{10}=\dfrac{2x}{18}=\dfrac{3y}{45}=\dfrac{4z}{40}=\dfrac{2x+3y-4z}{18+45-40}=\dfrac{34}{23}\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{34}{23}\cdot9=\dfrac{306}{23}\\y=\dfrac{34}{23}\cdot15=\dfrac{510}{23}\\z=\dfrac{34}{23}\cdot10=\dfrac{340}{23}\end{matrix}\right.\)
\(\frac{x}{2}=\frac{y}{3}=\frac{4x}{8}=\frac{3y}{9}=\frac{4x-3y}{8-9}=\frac{2}{-1}=-2\)
\(\Rightarrow x=-4,y=-6\)
Vậy \(A=x^2-y^2=\left(-4\right)^2-\left(-6\right)^2=16-36=-20\)
x/2 = y/3 => x=2/3.y
Khi đó : 2 = 8/3.y-3y = y.(8/3-3) = -y/3
=> -y = 2 . 3 = 6
=> y = -6
=> x = -4
Vậy A = (x-y).(x+y) = (-6+4).(-6-4) = 20
Tk mk nha
a) x/3=y/4
x=3y/4
x2y2=144
(3y/4)2y2=144
9y2/16 * y2=144
y4=162
y2=16
y=4 hoặc -4
tương tự câu b
4x=3y => x/3=y/4
áp dụng tính chất dãy tỉ số bằng nhau: x2.y2/32.42=144/144=1
=>x=3;y=4
=>x3-y3=33-43=-37
Ta có 4x=3y => x/3=y/4
Đặt x/3=y/4=k(k là số nguyên) => x=3k, y=4k
Ta có: x2*y2=(3k)2*(4k)2=144 => 9k2*16k2=144 => 144k4=144 => k=1
=> x=3, y=4
=>x3*y3=33*43=1728