so sánh : A = 1+2+2^2+...+2^2013 và B = 2^2014-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)
Vậy \(2^{332}< 3^{223}\)
1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)
\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)
Nên suy ra \(10A>10B\Rightarrow A>B\)
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2014^2}-1\right)\)
\(-A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{2014^2}\right)\)
\(-A=\frac{3}{2\cdot2}\cdot\frac{8}{3\cdot3}\cdot\frac{15}{4\cdot4}\cdot...\cdot\frac{4056195}{2014\cdot2014}\)
\(-A=\frac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2013\cdot2015\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2014\cdot2014\right)}\)
\(-A=\frac{\left(1\cdot2\cdot3\cdot...\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2015\right)}{\left(2\cdot3\cdot4\cdot...\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2014\right)}\)
\(-A=\frac{1\cdot2015}{2014\cdot2}=\frac{2015}{4028}\)
\(A=\frac{-2015}{4028}\)
Cho A = (1/2^2 - 1)(1/3^2 - 1) (1/4^2 - 1) ... (1/2013^2 -1)(1/2014^2 - 1) Và B = -1/2
So sánh A và B
$A=\frac{1}{2^2-1}+\frac{1}{3^2-1}+...+\frac{1}{2014^2-1}=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2013.2014}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2013}-\frac{1}{2014}=1-\frac{1}{2014}=\frac{2013}{2014}>-\frac{1}{2}$
ta có :\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(............\)
\(\frac{1}{2013^2}< \frac{1}{2012.2013}\)
cộng vế với vế ta được :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}< 1-\frac{1}{2013}=\frac{2012}{2013}< \frac{2014}{2013}\)
Gợi ý nhé: bạn hãy so sánh 2014A và 2014B rồi suy ngược lại A và B
Ta có:
2014A=20142014+ 2014/20142014+1=1+2013/20142014+1
2014B=20142013+2014/20142013+1=1+2013/20142013+1
vì 1+2013/20142014+1<1+2013/20142013+1 nên 10A < 10B
suy ra A<B
\(A=1+2+2^2+....+2^{2013}\)
\(2A=2+2^2+....+2^{2013}\)
\(2A-A=\left(2+2^2+....+2^{2013}\right)-\left(1+2+2^2+....+2^{2012}\right)\)
\(\Rightarrow A=2^{2013}-1\)
Ta có : \(A=2^{2013}-1\)và \(B=2^{2014}-1\)
Vì \(2^{2013}-1< 2^{2014}-1\)nên \(A< B\)
\(A< B\)
Đúng 100%
Đúng 100%
Đúng 100%