K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2023

a) Kẻ \(C'H \bot OC\left( {H \in OC} \right)\)

 là hình chữ nhật \( \Rightarrow OH = O'C' = a,OO'\parallel C'H\)

Mà \(OO' \bot \left( {ABCDEF} \right)\)

\(\begin{array}{l} \Rightarrow C'H \bot \left( {ABCDEF} \right)\\ \Rightarrow \left( {CC',\left( {ABCDEF} \right)} \right) = \left( {CC',CH} \right) = \widehat {C'CH}\end{array}\)

\(\begin{array}{l}HC = OC - O'C' = \frac{a}{2},C'H = OO' = a\\ \Rightarrow \tan \widehat {C'CH} = \frac{{C'H}}{{HC}} = 2 \Rightarrow \widehat {C'CH} \approx 63,{4^ \circ }\end{array}\)

Vậy \(\left( {CC',\left( {ABCDEF} \right)} \right) \approx 63,{4^ \circ }\)

b) Gọi \(M,M'\) lần lượt là trung điểm của \(AB,A'B'\).

\( \Rightarrow OM \bot AB,O'M' \bot A'B'\)

\(ABB'A'\) là hình thang cân \( \Rightarrow MM' \bot AB,MM' \bot A'B'\)

\( \Rightarrow \left[ {O,AB,A'} \right] = \widehat {OMM'},\left[ {O',A'B',A} \right] = \widehat {O'M'M}\)

Kẻ \(M'K \bot OM\left( {K \in OM} \right)\)

\(OO'M'K\) là hình chữ nhật \( \Rightarrow OK = O'K' = \frac{{A'B'\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{4},OO' = M'K = a\)

\(\begin{array}{l}OM = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2},MK = OM - OK = \frac{{a\sqrt 3 }}{4}\\ \Rightarrow \tan \widehat {OMM'} = \frac{{M'K}}{{MK}} = \frac{4}{{\sqrt 3 }} \Rightarrow \widehat {OMM'} \approx 66,{6^ \circ }\\ \Rightarrow \widehat {O'M'M} = {180^ \circ } - \widehat {OMM'} = 113,{4^ \circ }\end{array}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Ta có: AO // BC // EF

Suy ra các vectơ khác vectơ khác vectơ \(\overrightarrow 0 \) và cùng hướng với vectơ \(\overrightarrow {OA} \) là : \(\overrightarrow {DO} ,\overrightarrow {DA} ,\overrightarrow {CB} ,\overrightarrow {EF} \)

b) Ta có: \(OA = OB = OC = OD = OE = FO\) và AB // FC // ED

Suy ra các vectơ bằng vectơ \(\overrightarrow {AB} \) là \(\overrightarrow {FO} ,\overrightarrow {OC} ,\overrightarrow {ED} \)

2 tháng 2 2018

Diện rích một mặt bên là hình thang bằng:

S =1/2 (5 +10).5=37,5 ( c m 2 )

Diện tích xung quanh của hình chóp

cụt đều là: S x q =4.3,75 = 150 ( c m 2 )

2 tháng 1 2017

Kẻ A1H ⊥ AB, ta có:

A 1 I = 2,5cm; AJ = 5cm

Suy ra: AH = 2,5cm

Áp dụng định lí Pi-ta-go vào tam giác vuông A 1 H A , ta có:

A 1 A 2 = A 1 H 2 + A H 2  = 52 + 2,52 = 31,25

Suy ra: A 1 A = 31 , 25 ≈ 5,59 (cm)

Ta có: O 1 I = 2,5; OJ = 5cm.

Kẻ I I 1  ⊥ OJ, suy ra I 1 J = 2,5.

Áp dụng định kí Pi-ta-go vào tam giác vuông I I 1 J , ta có:

I J 2 = I I 1 2 + I 1 J 2

Suy ra:  I I 1 2 = I J 2 + I 1 J 2  = 52 – 2,52 = 18,75

Suy ra: I I 1  = 18 , 75 ≈ 4,33 (cm)

Vậy O 1 O =  I I 1  = 4,33 (cm)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

 

Gọi \(O,O'\) lần lượt là tâm của hai đáy \(ABC\) và \(A'B'C'\), \(M,M'\) lần lượt là trung điểm của \(BC\) và \(B'C'\).

Kẻ \(A'H \bot AO\left( {H \in AO} \right) \Rightarrow A'H = OO'\)

\(\Delta ABC\) đều \( \Rightarrow AM = \frac{{a\sqrt 3 }}{2} \Rightarrow AO = \frac{2}{3}AM = \frac{{a\sqrt 3 }}{3}\)

\(\Delta A'B'C'\) đều \( \Rightarrow A'M' = \frac{{\frac{a}{2}.\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{4} \Rightarrow A'O' = \frac{2}{3}A'M' = \frac{{a\sqrt 3 }}{6}\)

\(A'HOO'\) là hình chữ nhật \( \Rightarrow OH = A'O' = \frac{{a\sqrt 3 }}{6}\)

\( \Rightarrow AH = AO - OH = \frac{{a\sqrt 3 }}{6}\)

Tam giác \(AA'H\) vuông tại \(H\)

\( \Rightarrow OO' = A'H = \sqrt {AA{'^2} - A{H^2}}  = \frac{{a\sqrt {141} }}{6}\)

13 tháng 5 2017

\(a,S_{xp}=4.\dfrac{a+2a}{2}.a=6a^2\)

\(b,\)Vẽ một mặt bên. Ta có:\(AH=\dfrac{AB-A^'B^'}{2}=\dfrac{2a-a}{2}=\dfrac{a}{2}\)

Trong tamn giác vuông A'HA:

\(AA^'=\sqrt{a^2+\left(\dfrac{a}{2}\right)^2}=\sqrt{\dfrac{5a^2}{4}}\)

Từ đó tính tiếp sẽ ra chiều cao hình chóp

Đáp số :Độ dài cạnh bên là :\(\sqrt{\dfrac{5a^2}{4}}\)

Chiều cao chóp cụt :\(\sqrt{\dfrac{3a^2}{4}}\)

8 tháng 10 2018

26 tháng 10 2018

18 tháng 9 2017

Ta có: SH’ = 2 3 SH = 2 3 .6 = 4 (cm)