K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Tam giác \(SAC\) cân tại \(S \Rightarrow SO \bot AC\)

Tam giác \(SB{\rm{D}}\) cân tại \(S \Rightarrow SO \bot B{\rm{D}}\)

\( \Rightarrow SO \bot \left( {ABCD} \right)\)

9 tháng 2 2019

Gọi E, F lần lượt là trung điểm của AD, BC thì AB / / EF ⇒  AB / / (SEF) 

 

Dựng   A H ⊥ S E

Ta thấy: FE / / AB, A B ⊥ ( S A D ) ⇒ F E ⊥ ( S A D ) ⇒ F E ⊥ A H  

Mà A H ⊥ S E nên A H ⊥ ( S E F ) ⇔ d ( A , ( S E F ) ) = A H  

ABCD là hình vuông cạnh a nên B D = a 2  

Dễ dàng chứng minh được ∆ S A B = ∆ S A D c . g . c ⇒ S B = S D  

Tam giác SBD cân có S B D = 60 ° nên đều ⇒ S D = B D = a 2  

Tam giác SAD vuông tại A có S A = S D 2 - A D 2 = 2 a 2 - a 2 = a  

Tam giác SAE vuông tại A có

Do đó

Chọn đáp án D.

25 tháng 12 2019

Đáp án D

Phương pháp:

- Dựng mặt phẳng chứa SO và song song với AB .

- Sử dụng lý thuyết: Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách từ đường thẳng này đến mặt phẳng song song với nó và chứa đường thẳng kia.

- Đưa bài toán về tính khoảng cách từ điểm đến mặt phẳng và kết luận 

 

19 tháng 3 2017

Phương pháp:

- Dựng mặt phẳng chứa SO và song song với AB .

- Sử dụng lý thuyết: Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách từ đường thẳng này đến mặt phẳng song song với nó và chứa đường thẳng kia.

- Đưa bài toán về tính khoảng cách từ điểm đến mặt phẳng và kết luận.

Cách giải:

Gọi E, F lần lượt là trung điểm của AD, BC thì AB / / EF => AB / / (SEF) 

Mà 

ABCD là hình vuông cạnh a nên BD =  a 2

Dễ dàng chứng minh được

Tam giác SBD cân có  S B D   =   60 0  

Tam giác SAD vuông tại A có

Tam giác SAE vuông tại A có 

Do đó 

 

Chọn D.

10 tháng 6 2018

Đáp án C


Ta có tam giác SAO vuông cân tạiA.
Suy ra:  S A = O A = A C 2 = a 2 2

Vậy :  V S . A B C D = 1 3 . S O . S A B C D = a 3 2 6

18 tháng 2 2017

Đáp án C

1 tháng 5 2018

2 tháng 1 2017

Đáp án D

Phương pháp:

Gọi a’ là hình chiếu vuông góc của a trên mặt phẳng (P).

Góc giữa đường thẳng a và mặt phẳng (P) là góc giữa đường thẳng a và a’.

Cách giải:

Gọi H là trung điểm của AB => OH//AD

ABCD là hình vuông => AD ⊥ AB; OHAB

Mà OH ⊥ SA, (vì SA ⊥ (ABCD))

=> OH ⊥ (SAB)

=>SH là hình chiếu vuông góc của SO trên mặt phẳng (SAB)

=> (SO,(SAB)) = (SO,SH) = HSO

Ta  có:  OH là đường trung bình của tam giác ABD 

Tam giác SAH vuông tại A 

Tam giác SHO vuông tại H: 

9 tháng 12 2017

a: BD vuông góc AC

BD vuông góc SA

=>BD vuông góc (SAC)

b: Tham khảo:

loading...

loading...

loading...