cho x,y>0 thỏa
\(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\)
Tìm GTNN của A=xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)
\(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)
max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2=\frac{4}{\left(x+y\right)^2}+2=6\)
Dấu "=" xảy ra khio x=y=1/2
Ta có: \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
=> \(\left(x^2+\frac{y^2}{4}\right)+\left(x^2+\frac{1}{x^2}\right)=4\)
Lại có: \(x^2+\frac{y^2}{4}\ge2.x.\frac{y}{2}=xy\) Và \(x^2+\frac{1}{x^2}\ge2.x.\frac{1}{x}=2\)
=> \(4\ge xy+2\)=> \(2\ge xy\)
=> \(A=2016+xy\le2016+2=2018\)
=> Amin=2018
\(\sqrt[]{\sqrt{ }\frac{ }{ }\sqrt[]{}3\hept{\begin{cases}\\\\\end{cases}}3\frac{ }{ }\sqrt{ }\cos\hept{\begin{cases}\\\\\end{cases}}\Omega3\cong}\)
\(A=\frac{1}{x^2+y^2}+\frac{5}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{9}{2xy}\ge\frac{4}{\left(x+y\right)^2}+\frac{9}{2\left(\frac{x+y}{2}\right)^2}\)
nên \(A\ge4+9.2=22\)
Dấu bằng xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)
Cho x > 0; y > 0 và 2x+3y < hoặc = 2. Tìm gtnn của biếu thức:
A =\(\frac{4}{4x^2+9y^2}+\frac{9}{xy}\)
Bổ đề: \(2xy\le x^2+y^2\)
\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}=\frac{1}{x^2+y^2}+\frac{4}{2xy}\ge\frac{1}{x^2+y^2}+\frac{4}{x^2+y^2}=\frac{5}{x^2+y^2}\ge5\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)
Áp dụng bđt Cô-si:
\(4=x^2+x^2+\frac{1}{x^2}+\frac{y^2}{4}\ge4\sqrt[4]{x^2.x^2.\frac{1}{x^2}.\frac{y^2}{4}}=4\sqrt[4]{\frac{x^2y^2}{4}}\)
=>\(\sqrt[4]{\frac{x^2y^2}{4}}\le1\Rightarrow x^2y^2\le4\Rightarrow xy\ge-2\)
Dấu "=" xảy ra khi x=-1 và y=2 hoặc x=1 và y=-2
x2+x2+\(\frac{1}{x^2}+\frac{y^2}{4}=4\)
áp dụng bất đẳng thức cosi
\(x^2+\frac{1}{x^2}\ge2\sqrt{x^2.\frac{1}{x^2}}\)
=>\(x^2+\frac{1}{x^2}\ge2\)1
\(x^2+\frac{y^2}{4}\ge2\sqrt{x^2.\frac{y^2}{4}}\)
=>\(x^2+\frac{y^2}{4}\ge xy\)2
từ 1,2 =>\(4\ge2xy\Rightarrow2\ge xy\)