Chứng minh biểu thức sau có giá trị không phụ thuộc vào biến
(∛x +1)3 - (∛x - 1)3 - 6(∛x - 1)(∛x + 1)
Em cảm ơn trước ạ ;-;
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (x+1)^3 - (x-1)^3
=(x3+3x2+3x+1)-(x3-3x2+3x-1)
= x3 + 3x2 +3x +1 - x3 + 3x2 -3x + 1
=6x2 + 2
Vậy biểu thức này có phụ thuộc vào biến x (vì vẫn còn 6x2)
Chúc bạn học tốt!
Thực hiện khai triển hằng đẳng thức
A = ( x 3 – 1) + ( x 3 – 6 x 2 + 12x – 8) – 2( x 3 + 1) + 6( x 2 – 2x + 1).
Rút gọn A = -5 không phụ thuộc biến x.
\(=x^3-3x^2+3x-1-\left(x^3+x^2+x-x^2-x-1\right)-3x+3x^2\)
\(=x^3-3x^2+3x-1-\left(x^3-1\right)-3x+3x^2\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
\(=0\)
Vậy giá trị biểu thức không phụ thuộc vào biến x
( x - 1 )3 - ( x - 1 )( x2 + x + 1 ) - 3( 1 - x )x
= x3 - 3x2 + 3x - 1 - ( x3 - 1 ) - 3x + 3x2
= x3 - 3x2 + 3x - 1 - x3 + 1 - 3x + 3x2
= 0
Vậy biểu thức không phụ thuộc vào biến ( đpcm )
\(\left(6x-5\right)\left(x+8\right)-\left(3x-1\right)\left(2x+3\right)-9\left(4x-3\right)=6x^2+43x-40-6x^2-7x+3-36x+27=-10\)
\(\left(\sqrt[3]{x}+1\right)^3-\left(\sqrt[3]{x}-1\right)^3-6\left(\sqrt[3]{x}-1\right)\left(\sqrt[3]{x}+1\right)\\ =x+3\sqrt[3]{x^2}+3\sqrt[3]{x}+1-\left(x-3\sqrt[3]{x^2}+3\sqrt[3]{x}-1\right)-6\left(\sqrt[3]{x^2}-1\right)\\ =x+3\sqrt[3]{x^2}+3\sqrt[3]{x}+1-x+3\sqrt[3]{x^2}-3\sqrt[3]{x}+1-6\sqrt[3]{x^2}+6\\ =8\)
Lời giải:
Gọi biểu thức là $A$
\(A=(x+3\sqrt[3]{x^2}+3\sqrt[3]{x}+1)-(x-3\sqrt[3]{x^2}+3\sqrt[3]{x}-1)-6(\sqrt[3]{x^2}-1)\)
\(6\sqrt[3]{x^2}+2-6(\sqrt[3]{x^2}-1)=8\) là giá trị không phụ thuộc vào biến.