K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2017

  1/ Phần này đơn giản thôi bạn! Khi chứng minh tâm của đường tròn ngoại tiếp tam giác vuồn là trung điểm cạnh huyền thì ta chứng minh ngược lại là trung điểm của cạnh huyền trong 1 tam giác vuông là tâm của đường tròn ngoại tiếp. 
Giả sử ta có tam giác ABC vuông tại A và O là trung điểm của cạnh huyền BC 
=> AO là đường trung tuyến ứng với cạnh huyền 
=> OA = OB =OC = 1/2 BC 
=> O là tâm của đường tròn ngoại tiếp tam giác ABC 
Vậy .... 
2/ Giả sử ta có tam giác ABC có BC là đường kính của đường tròn ngoại tiếp tam giác. 
Gọi O là tâm của đường tròn ngoại tiếp tam giác ABC 
=>OA = OB =OC (*) 
mà BC là đường kính của đường tròn ngoại tiếp 
=> O là trung điểm BC 
=> OB = OC = 1/2 BC(**) 
từ (*) và (**) => OA = OB = OC = 1/2 BC 
=> tam giác ABC vuông tại A 

20 tháng 2 2018

@Nhoc_sieu_pham đây là toán lớp 7 mà, sao lại giải cách lớp 9 như vậy được?

9 tháng 1 2018

A B C D M 1 2 1

trên tia đối của tia MA lấy điểm D sao cho MD = MA 

xét  \(\Delta AMB\)và \(\Delta DMC\)có :

MB = MC ( gt )

\(\widehat{M_1}=\widehat{M_2}\)( hai góc đối đỉnh )

MA = MD ( do cách vẽ )

Suy ra : \(\Delta AMB\)\(\Delta DMC\)( c.g.c )

Suy ra : AB = AC và \(\widehat{A_1}=\widehat{D}\) \(\Rightarrow\)AB // CD ( vì có cặp góc sole trong bằng nhau )

vì \(AC\perp AB\)( gt ) nên AC \(\perp\)CD ( quan hệ giữa tính song song và vuông góc )

Xét \(\Delta ABC\)và \(\Delta CDA\)có :

AB = CD ( chứng minh trên )

\(\widehat{A}=\widehat{C}=90^o\)

AC ( chung )

Vậy \(\Delta ABC\)\(\Delta CDA\)( c.g.c ) suy ra BC = AD

vì \(AM=MD=\frac{AD}{2}\)nên \(AM=\frac{BC}{2}\)

17 tháng 9 2017
Định lý 1Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.[1]

Đề bài minh hoạ:

Cho tam giác ABC có M là trung điểm cạnh AB. Đường thẳng đi qua M song song với cạnh BC và cắt cạnh AC tại điểm N. Chứng minh .

Chứng minh định lý:

Từ M vẽ tia song song với AC, cắt BC tại F. Tứ giác MNCF có hai cạnh MN và FC song song nhau nên là hình thang. Hình thang MNCF có hai cạnh bên song song nhau nên hai cạnh bên đó bằng nhau (theo tính chất hình thang):  (1)

Xét hai tam giác BMF và MAN, có:  (hai góc đồng vị),  và  (hai góc đồng vị). Suy ra  (trường hợp góc - cạnh - góc), từ đó suy ra  (2)

Từ (1) và (2) suy ra . Định lý được chứng minh.

Định lý 2

Đường trung bình của tam giác thì song song với cạnh thứ ba và dài bằng nửa cạnh ấy.[2]

Cho tam giác ABC có M là trung điểm cạnh AB và N là trung điểm cạnh AC ( và ). Chứng minh  và .

Chứng minh định lý:

Kéo dài đoạn MN về phía N một đoạn NF có độ dài bằng MN. Nhận thấy:  (trường hợp cạnh - góc - cạnh)

suy ra . Hai góc này ở vị trí so le trong lại bằng nhau nên  hay . Mặt khác vì hai tam giác này bằng nhau nên , suy ra  (vì ). Tứ giác BMFC có hai cạnh đối BM và FC vừa song song, vừa bằng nhau nên BMFC là hinh binh hanh, suy ra  hay . Mặt khác, , mà  (tính chất hình bình hành), nên . Định lý được chứng minh.

16 tháng 9 2017

D/L: Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.

ta lay vd 1 de bai de chung minh:

Cho tam giác ABC có M là trung điểm cạnh AB. Đường thẳng đi qua M song song với cạnh BC và cắt cạnh AC tại điểm N. Chứng minh 

ta chung minh dinh ly

Từ M vẽ tia song song với AC, cắt BC tại F. Tứ giác MNCF có hai cạnh MN và FC song song nhau nên là hình thang. Hình thang MNCF có hai cạnh bên song song nhau nên hai cạnh bên đó bằng nhau (theo tính chất hình thang):  (1)

Xét hai tam giác BMF và MAN, có:  (hai góc đồng vị),  và  (hai góc đồng vị). Suy ra  (trường hợp góc - cạnh - góc), từ đó suy ra  (2)

Từ (1) và (2) suy ra . ( dieu phai chung minh )

D/L : Đường trung bình của tam giác thì song song với cạnh thứ ba và dài bằng nửa cạnh ấy

VD : Cho tam giác ABC có M là trung điểm cạnh AB và N là trung điểm cạnh AC ( và ). Chứng minh  và 

chung minh dinh li

Kéo dài đoạn MN về phía N một đoạn NF có độ dài bằng MN. Nhận thấy:  (trường hợp cạnh - góc - cạnh)

suy ra . Hai góc này ở vị trí so le trong lại bằng nhau nên  hay . Mặt khác vì hai tam giác này bằng nhau nên , suy ra  (vì ). Tứ giác BMFC có hai cạnh đối BM và FC vừa song song, vừa bằng nhau nên BMFC là hình bình hành, suy ra  hay . Mặt khác, , mà  (tính chất hình bình hành), nên 

24 tháng 3 2020

Câu hỏi của Lương Thu Trang - Toán lớp 7 - Học toán với OnlineMath

5 tháng 3 2020

Đó là cách lớp 8 rồi bn 

24 tháng 3 2020

Câu hỏi của Lương Thu Trang - Toán lớp 7 - Học toán với OnlineMath