K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

Ta có : C = (x + 1).(x + 2).(x + 3).(x + 4)

=> C = [(x + 1).(x + 4)].[(x + 2).(x + 3)]

=> C = [x2 + 5x + 4] . [x2 + 5x + 6]

Đặt t = x2 + 5x + 5

Khi đó t - 1 = x2 + 5x + 4 , t + 1 = x2 + 5x + 6  

Nên C = (t - 1)(t + 1) = t2 - 1 = (x2 + 5x + 5)2 - 1

Mà (x2 + 5x + 5)2​ \(\ge0\forall x\)

Do đó (x2 + 5x + 5)- 1​ \(\ge-1\forall x\)

Vậy GTNN của C là : 

27 tháng 1 2022

H=\(x^6-2x^3+x^2-2x+2\)

\(=x^6+2x^5+3x^4+2x^2-2x^5-4x^4-6x^3-4x^2-4x+x^4+2x^3+3x^2+2x+2\)

\(=x^2\left(x^4+2x^3+3x^2+2\right)-2x\left(x^4+2x^3+3x^2+2\right)+\left(x^4+2x^3+3x^2+2\right)\)

\(=\left(x^2-2x+1\right)\left(x^4+2x^3+3x^2+2\right)\)

\(=\left(x-1\right)^2\left(x^2+1\right)\left(x^2+2x+2\right)\)

\(=\left(x-1\right)^2\left(x^2+1\right)\left[\left(x+1\right)^2+1\right]\text{≥}0\)

Vì \(\left\{{}\begin{matrix}\left(x-1\right)^2\text{≥}0\\\left(x^2+1\right)\text{≥}1\\\left(x+1\right)^2+1\text{≥}1\end{matrix}\right.\)

⇒ MinH=0 ⇔ \(x=1\)

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

AH
Akai Haruma
Giáo viên
30 tháng 10 2023

Lời giải:

$A=(x^2+4y^2+4xy)+x^2+5-8x-12y$

$=(x+2y)^2-6(x+2y)+x^2+5-2x$

$=(x+2y)^2-6(x+2y)+9+(x^2-2x+1)-5$

$=(x+2y-3)^2+(x-1)^2-5\geq 0+0-5=-5$

Vậy $A_{\min}=-5$. Giá trị này đạt được khi $x+2y-3=x-1=0$

$\Leftrightarrow x=1; y=1$

6 tháng 8 2017

Ta có : E = (x - 1) (x + 2)(x + 3)(x + 6)

=> E = [(x - 1)(x + 6)][(x + 2)(x + 3)]

=> E = (x2 + 5x - 6)(x2 + 5x + 6)

=> E = (x2 + 5x)2 - 62

=> E = (x2 + 5x)2 - 36

Mà : (x2 + 5x)2 \(\ge0\forall x\)

Nên : (x2 + 5x)2 - 36 \(\ge-36\forall x\)

Vậy GTNN của biểu thức là 36 tại x2 + 5x = 0 => x(x + 5) = 0 => x = 0 ; -5 

\(P=x^2+4xy+4y^2-4xy-4y^2+2x+3\)

\(=x^2+2x+3\)