Cho tam giác ABC nhọn, kẻ đường phân giác AD. Lấy M,N trên AB,AC sao cho DM//AC, DN//AB. Chứng minh
a) 1/DM = 1/AB + 1/AC
b) AD = 2.AB.AC/ (AB+AC). cos A/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABM và ΔADM có
AB=AD(gt)
\(\widehat{BAM}=\widehat{DAM}\)(AM là tia phân giác của \(\widehat{BAD}\))
AM chung
Do đó: ΔABM=ΔADM(C-g-c)
Suy ra: MB=MD(Hai cạnh tương ứng) và \(\widehat{ABM}=\widehat{ADM}\)(Hai góc tương ứng)
Ta có: \(\widehat{ABM}+\widehat{EBM}=180^0\)(hai góc kề bù)
\(\widehat{ADM}+\widehat{CDM}=180^0\)(hai góc kề bù)
mà \(\widehat{ABM}=\widehat{ADM}\)(cmt)
nên \(\widehat{EBM}=\widehat{CDM}\)
Xét ΔBME và ΔDMC có
\(\widehat{EBM}=\widehat{CDM}\)(cmt)
MB=MD(cmt)
\(\widehat{BME}=\widehat{DMC}\)(hai góc đối đỉnh)
Do đó: ΔBME=ΔDMC(g-c-g)
Suy ra: ME=MC(Hai cạnh tương ứng)
Xét ΔMEC có ME=MC(cmt)
nên ΔMEC cân tại M(Định nghĩa tam giác cân)
a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có
AD chung
góc MAD=góc NAD
=>ΔMAD=ΔNAD
=>AM=AN
b: Xét ΔACB có AM/AB=AN/AC
nên MN//BC
c: Xét ΔADE có
AM vừa là đường cao, vừa là trung tuýen
=>ΔADE cân tại A
=>AD=AE
Xét ΔADF có
AN vừa là đường cao, vừa là trung tuyến
=>ΔADF cân tại A
=>AD=AF
=>AE=AF
=>ΔAEFcân tạiA
a) Vì MD là trung trực AB trong ∆AMD
=> ∆AMD cân tại A
=> AM = AD
Vì DN là trung trực AC trong ∆ADN
=>∆ADN cân tại A
=> AD = AN
Mà AM = AD
=> AM = AN
=> ∆AMN cân tại A
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó:ΔABD=ΔACD
b: Xét ΔADM vuông tại M và ΔADN vuông tại N có
AD chung
\(\widehat{DAM}=\widehat{DAN}\)
DO đó: ΔADM=ΔADN
Suy ra: DM=DN
hay ΔDMN cân tại D
c: Ta có: AM=AN
DM=DN
Do đó: AD là đường trung trực của MN
hay AD⊥MN