Cho \(\Delta\)ABC có các cạnh a, b, c nội tiếp đường tròn tâm O, bán kính R. Vẽ AH\(⊥\)BC. Chứng minh:
a) \(b\times c=2R\times AH\)
b) \(S_{\Delta ABC}=\frac{abc}{4R}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HÌnh bạn tự vẽ.
Bổ đề: (định lý Ptô-lê-mê)
Trong một tứ giác nội tiếp ABCD, ta có:
AC . BD = AB . CD + BC . AD
Áp dụng bổ đề trên cho tứ giác nội tiếp IPAN, ta có IA.NP = IP.AN + IN.AP = 2r(p - a) (ở đây ta đặt BC = a, CA = b, AB = c) và
\(p=\frac{a+b+c}{2}\) thì AN = AP = p - a.
Tương tự IB . PM = 2r(p - b)
IC . MN = 2r(p - c)
Nhân theo vế ba đẳng thức trên ta được:
\(IA.IB.IC.MN.NP.PM=8r^3\left(p-a\right)\left(p-b\right)\left(p-c\right)\).
Mặt khác, vì r là bán kính đường tròn ngoại tiếp \(\Delta MNP\)nên MN.NP.PM = \(4rS_{MNP}\).
Ngoài ra theo công thức Hê-rông ta có:
\(S_{ABC}=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\).Do đó:
IA . IB . IC. 4rSMNP = \(\frac{8r^3.S^2_{ABC}}{p}=8r^4S_{ABC}\)(vì SABC = pr), suy ra đpcm
P/s: Chỗ nào không hiểu thì bạn chỉ việc vẽ hình ra và quan sát hình là được :))
viết thiếu rùi bạn phải thêm BC là đường kính của đường tròn nữa
AH vuông góc BC và KB vuông góc CB nên AH//BK
Lại có BH vuông góc AC và KA vuông góc CA nên HB//AK
Xét tứ giác AHBK có: AH//BK và HB//AK nên AHBK là hình bình hành
Suy ra AH=BK
Xét (O;R) có:
CK là đường kính của (O;R)
Điểm C; B; K thuộc (O;R)
Suy ra: tam giác CBK vuông tại B
Áp dụng dịnh lý py-ta-go cho tam giác CBK vuông tại B
Có: BK^2+CB^2=CK^2
Mà AH=BK(cmt)
Suy ra: AH^2+ BC^2=CK^2 (1)
Có CK là đường kính
Suy ra CK=2R tương đương CK^2=4R^2 (2)
Adđl py-ta-go cho các tam giac AA'B; CHA'; BAB'; BB'C
Có: AB^2=AA'^2+BA'^2
CH^2=CA'^2+HA'^2
AH^2=AB'^2+HB'^2
BC^2=BB'^2+B'C^2
Suy ra: AB^2+CH^2=( AA'^2+CA'^2 ) + ( BA'^2+HA'^2 )= AC^2+BH^2 (3)
=) AH^2+BC^2= BB'^2+AB'^2+HB'^2+B'C^2=AB^2+CH^2 (4)
Từ (1) ; (2) ;(3) và (4) =) AH^2+BC^2= BH^2+AC^2=CH^2+AB^2=4R^2 (đpcm)
a) Chứng minh \(AB.AC=2R.AH\).Nối đường kính BK là thấy liền.Ta sẽ chứng minh \(\Delta ABK~\Delta HAC\).Đến đây thì Ez rùi
b)Lợi dụng câu a ta có:
\(AB.AC=2R.AH\Rightarrow AB.AC.BC=2RAH.BC=4R.SABC\)hay \(S_{ABc}=\frac{AB.BC.CA}{4R}\)