K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2017

A B C H O K

a) Chứng minh \(AB.AC=2R.AH\).Nối đường kính BK là thấy liền.Ta sẽ chứng minh \(\Delta ABK~\Delta HAC\).Đến đây thì Ez rùi 

b)Lợi dụng câu a ta có:

\(AB.AC=2R.AH\Rightarrow AB.AC.BC=2RAH.BC=4R.SABC\)hay \(S_{ABc}=\frac{AB.BC.CA}{4R}\)

9 tháng 3 2018

HÌnh bạn tự vẽ.

Bổ đề: (định lý Ptô-lê-mê)

Trong một tứ giác nội tiếp ABCD, ta có:

AC . BD = AB . CD + BC . AD

Áp dụng bổ đề trên cho tứ giác nội tiếp IPAN, ta có IA.NP = IP.AN + IN.AP = 2r(p - a) (ở đây ta đặt BC = a, CA = b, AB = c) và

\(p=\frac{a+b+c}{2}\) thì AN = AP = p - a.

Tương tự IB . PM = 2r(p - b)

                 IC . MN = 2r(p - c)

Nhân theo vế ba đẳng thức trên ta được:

\(IA.IB.IC.MN.NP.PM=8r^3\left(p-a\right)\left(p-b\right)\left(p-c\right)\).

Mặt khác, vì r là bán kính đường tròn ngoại tiếp \(\Delta MNP\)nên MN.NP.PM = \(4rS_{MNP}\).

Ngoài ra theo công thức Hê-rông ta có:

\(S_{ABC}=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\).Do đó:

IA . IB . IC. 4rSMNP = \(\frac{8r^3.S^2_{ABC}}{p}=8r^4S_{ABC}\)(vì SABC = pr), suy ra đpcm

  P/s: Chỗ nào không hiểu thì bạn chỉ việc vẽ hình ra và quan sát hình là được :))

19 tháng 1 2017

Bao giờ bạn cần. Để mai mình suy nghĩ làm được k?

20 tháng 1 2017

viết thiếu rùi bạn phải thêm BC là đường kính của đường tròn nữa

19 tháng 2 2022

AH vuông góc BC và KB vuông góc CB nên AH//BK

Lại có BH vuông góc AC và KA vuông góc CA nên HB//AK

Xét tứ giác AHBK có: AH//BK và HB//AK nên AHBK là hình bình hành

Suy ra AH=BK

Xét (O;R) có:

CK là đường kính của (O;R)

Điểm C; B; K thuộc (O;R)

Suy ra: tam giác CBK vuông tại B

Áp dụng dịnh lý py-ta-go cho tam giác CBK vuông tại B

Có: BK^2+CB^2=CK^2

Mà AH=BK(cmt)

Suy ra: AH^2+ BC^2=CK^2            (1)

Có CK là đường kính 

Suy ra CK=2R tương đương CK^2=4R^2            (2)

Adđl py-ta-go cho các tam giac AA'B; CHA'; BAB'; BB'C

Có: AB^2=AA'^2+BA'^2

      CH^2=CA'^2+HA'^2

      AH^2=AB'^2+HB'^2

      BC^2=BB'^2+B'C^2

Suy ra: AB^2+CH^2=( AA'^2+CA'^2 ) + ( BA'^2+HA'^2 )= AC^2+BH^2     (3)

=) AH^2+BC^2= BB'^2+AB'^2+HB'^2+B'C^2=AB^2+CH^2              (4)

Từ (1) ; (2) ;(3) và (4) =) AH^2+BC^2= BH^2+AC^2=CH^2+AB^2=4R^2 (đpcm)

undefined