Tìm số nguyên:
e, x+y + 3xy = 1
g, xy + 3x + y = 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Tìm x, y nguyên biết :
a) 4x + 2xy + y = 7
=> 2.x(y-2)+(y-2)=5
=> ( y-2)(2x+1)= 5
Ta có bảng sau:
2x+1 | -5 | -1 | 1 | 5 |
y-2 | -1 | -5 | 5 | 1 |
x | -3 | -1 | 0 | 2 |
y | 1 | -3 | 7 | 3 |
Điều kiện: t/m
Vậy:....
phần b và c tương tự
Mình viết gọn thôi nhé , tại nhiều câu quá ^^
a/ \(\left(x+1\right)\left(1-y\right)=2\)
b/ \(\left(x+2\right)\left(y-1\right)=13\)
c/ \(\left(x-2\right)\left(y+3\right)=1\)
d/ \(\left(x-1\right)\left(y-1\right)=3\)
e/ \(\left(2x-y\right)\left(x+2y\right)=7\)
Về cách tìm nghiệm nguyên chắc bạn biết rồi nên mình không viết rõ ra nhé ^^
vết tn mk ko hiểu tại sao lại phân tích như vậy
còn cách tìm nghiệm thì mk pit
a, 3x ( y+1) + y + 1 = 7
(y+1)(3x +1) =7
th1 : \(\left\{{}\begin{matrix}y+1=1\\3x+1=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y+1=-1\\3x+1=-7\end{matrix}\right.\)=> x = -8/3 (loại)
th3: \(\left\{{}\begin{matrix}y+1=7\\3x+1=1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}y=6\\x=0\end{matrix}\right.\)
th 4 : \(\left\{{}\begin{matrix}y+1=-7\\3x+1=-1\end{matrix}\right.\)=> x=-2/3 (loại)
Vậy (x,y)= (2 ;0); (0; 6)
b, xy - x + 3y - 3 = 5
(x( y-1) + 3( y-1) = 5
(y-1)(x+3) = 5
th1: \(\left\{{}\begin{matrix}y-1=1\\x+3=5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y-1=-1\\x+3=-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=-8\end{matrix}\right.\)
th3: \(\left\{{}\begin{matrix}y-1=5\\x+3=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=6\\x=-2\end{matrix}\right.\)
th4: \(\left\{{}\begin{matrix}y-1=-5\\x+3=-1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=-4\\x=-4\end{matrix}\right.\)
vậy (x, y) = ( 8; 2); ( -8; 0); (-2; 6); (-4; -4)
c, 2xy + x + y = 7 => y = \(\dfrac{7-x}{2x+1}\) ; y ϵ Z ⇔ 7-x ⋮ 2x+1
⇔ 14 - 2x ⋮ 2x + 1 ⇔ 15 - 2x - 1 ⋮ 2x + 1
th1 : 2x + 1 = -1=> x = -1; y = \(\dfrac{7-(-1)}{-1.2+1}\) = -8
th2: 2x+ 1 = 1=> x =0; y = 7
th3: 2x+1 = -3 => x = x=-2 => y = \(\dfrac{7-(-2)}{-2.2+1}\) = -3
th4: 2x+ 1 = 3 => x = 1 => y = \(\dfrac{7+1}{2.1+1}\) = 2
th5: 2x + 1 = -5 => x = -3=> y = \(\dfrac{7-(-3)}{-3.2+1}\) = -2
th6: 2x + 1 = 5 => x = 2; ; y = \(\dfrac{7-2}{2.2+1}\) =1
th7 : 2x + 1 = -15 => x = -8; y = \(\dfrac{7-(-8)}{-8.2+1}\) = -1
th8 : 2x+1 = 15 => x = 7; y = \(\dfrac{7-7}{2.7+1}\) = 0
kết luận
(x,y) = (-1; -8); (0 ;7); ( -2; -3) ; ( 1; 2); ( -3; -2); (2;1); (-8;-1);(7;0)
3xy−2x+5y=293xy−2x+5y=29
9xy−6x+15y=879xy−6x+15y=87
(9xy−6x)+(15y−10)=77(9xy−6x)+(15y−10)=77
3x(3y−2)+5(3y−2)=773x(3y−2)+5(3y−2)=77
(3y−2)(3x+5)=77(3y−2)(3x+5)=77
⇒(3y−2)⇒(3y−2) và (3x+5)(3x+5) là Ư(77)=±1,±7,±11,±77Ư(77)=±1,±7,±11,±77
Ta có bảng giá trị sau:
Do x,y∈Zx,y∈Z nên (x,y)∈{(−4;−3),(−2;−25),(2;3),(24;1)}
a: =(a^2-b^2)-(2a-2b)
=(a-b)(a+b)-2(a-b)
=(a-b)(a+b-2)
b: =(3x-3y)+5y(x-y)
=3(x-y)+5y(x-y)
=(x-y)(5y+3)
c: \(=\left(x+y\right)^2\left(x-y\right)+x\left(y-x\right)\)
=(x-y)*(x+y)^2-x(x-y)
=(x-y)[(x+y)^2-x]
d: \(=\left(x-y+4-2x-3y+1\right)\left(x-y+4+2x+3y-1\right)\)
=(-x-4y+5)(3x+2y+3)
e: =16-(x^2-4xy+4y^2)
=16-(x-2y)^2
=(4-x+2y)(4+x-2y)
g: =9x^2-6x+1-(3xy-y)
=(3x-1)^2-y(3x-1)
=(3x-1)(3x-y-1)
h: =(x-y)^3-z^3
=(x-y-z)[(x-y)^2+z(x-y)+z^2]
=(x-y-z)(x^2-2xy+y^2+xz-yz+z^2)
a) \(a^2-b^2-2a+2b\)
\(=\left(a^2-b^2\right)-\left(2a-2b\right)\)
\(=\left(a+b\right)\left(a-b\right)-2\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b-2\right)\)
b) \(3x-3y-5x\left(y-x\right)\)
\(=\left(3x-3y\right)+5x\left(x-y\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(5x+3\right)\left(x-y\right)\)
c) \(x\left(x+y\right)^2-y\left(x+y\right)^2+xy-x^2\)
\(=\left(x+y\right)^2\left(x-y\right)+\left(xy-x^2\right)\)
\(=\left(x+y\right)^2\left(x-y\right)-x\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+2xy+y^2-x\right)\)
d) \(\left(x-y+4\right)^2-\left(2x+3y-1\right)\)
\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-3y+1\right)\)
\(=\left(3x+2y+3\right)\left(-x-4y+5\right)\)
e) \(x+y+3xy=1\)
\(\Leftrightarrow3x+3y+9xy=3\)
\(\Leftrightarrow3x+9xy+3y=3\)
\(\Leftrightarrow3x\left(1+3y\right)+1+3y=4\)
\(\Leftrightarrow\left(3y+1\right)\left(3x+1\right)=4\)
\(\Leftrightarrow\left(3x+1\right);\left(3y+1\right)\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-\dfrac{2}{3};-\dfrac{5}{3}\right);\left(0;1\right);\left(-1;-1\right);\left(\dfrac{1}{3};\dfrac{1}{3}\right);\left(-\dfrac{5}{3};-\dfrac{2}{3}\right);\left(1;0\right)\right\}\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(0;1\right);\left(-1;-1\right);\left(1;0\right)\right\}\)