Cho 3a+2b+c chia hết cho 7.Chứng minh 23a+13b+17c chia hết cho 7.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
17a +13b 9c = 3a +6b +9c +14a +7b
=3(a+2b+3c) +14a +7b
a+2b+3c chia hết cho 7
=> 3(a+2b+3c) chia hết cho 7
14a chia hết cho 7
7b chia hết cho 7
từng số chia hết cho 7, tổng của chúng chắc chắn chia hết cho 7
\(17a+13b+9c=3a+6b+14a+7b\)
\(=3\left(a+2b+3c\right)+14b+7b\)
Vì \(a+2b+3c\)chia hết cho 7
\(\Rightarrow3\left(a+2b+3c\right)\)chia hết cho 7
Ta có: 14a chia hết cho 7 ( Vì 14 chia hết cho 7 )
7b chia hết cho 7 ( Vì 7 chia hết cho 7 )
Vì từng số hạng chia hết cho 7 nên tổng trên chia hết cho 7
=> 17a+13b+9c chia hết cho 7 (đpcm)
\(\Leftrightarrow\left\{{}\begin{matrix}a=7k\\b=7c\end{matrix}\right.\)
4a+19b=28k+133c=7(4k+19c) chia hết cho 7
Ta có: 3a+2bchia hết cho 17
=>10(3a+2b)chia hết cho17
=>30a+20b chia hết cho 17
=>30a+3b+17b chia hết cho 17
=>3(10a+b)+17b chia hết cho 17
Mà 17b chia hết cho 17 nên 3(10a+b) chia hết cho 17
Lại có (3,17)=1 nên 10a+b chia hết cho 17
Vậy 10a+b chia hết cho 17
Ta có: 3a+2b chia hết cho 17
Suy ra 10*(3a+2b) chia hết cho 17
Suy ra 30a+20b chia hết cho17
Suy ra 30a+3b+17b chia hết cho 17
Suy ra 3(10a+b)+17b chia hết cho 17
Mà 17b chia hết cho 17 nên (10a+b) chia hết cho 17
Lại có (3,17)=1 nên 10a+b chia hết cho 17
Vậy 10a+b chia hết cho 17
Nhớ L-I-K-E cho mình nhé
17a +13b 9c = 3a +6b +9c +14a +7b
=3﴾a+2b+3c﴿ +14a +7b
a+2b+3c chia hết cho 7
=> 3﴾a+2b+3c﴿ chia hết cho 7
14a chia hết cho 7
7b chia hết cho 7
từng số chia hết cho 7, tổng của chúng chắc chắn chia hết cho 7
(chọn đúng với nha bạn)
Chứng minh rằng : 10a+b chia hết cho 7 hay chia hết cho 17 vậy
\(\text{Ta có :}2(10a+b)-(3a+2b)=20a+2b-3a+2b\)
\(=17a\)
Vì 17 chia hết cho 17 nên 17a chia hết cho 17
\(\Rightarrow2(10a+b)-(3a+2b)⋮17\)
Vì 3a + 2b chia hết cho 17 \(\Rightarrow2(10a+b)⋮17\)
Mà \((2;17)=1\)nên \(10a+b⋮17\)
Vậy nếu 3a + 2b chia hết cho 17 thì 10a + b chia hết cho 17
1)Ta có \(A=12.\left(10a+3b\right)\)( đã sửa 120b thành 120a )
Vì\(a,b\in N\Rightarrow10a+3b\in N\)
Do đó\(12.\left(10a+3b\right)⋮12\)
Vậy\(A⋮12\)
2)
a) Ta có \(2a+7b=2a+b+6b=\left(2a+b\right)+6b\)chia hết cho 3
Có \(6b⋮3\)mà\(\left(2a+b\right)+6b⋮3\)nên \(2a+b⋮3\)( \(A+B⋮C\)mà\(B⋮C\)\(\Rightarrow A⋮C\))
\(2a+b⋮3\Rightarrow2.\left(2a+b\right)⋮3\)\(\Rightarrow4a+2b⋮3\)
b) Ta có \(a+b⋮2\)lại có \(2b⋮2\)
nên \(\left(a+b\right)+2b⋮2\)hay\(a+3b⋮2\)
c) Ta có \(12a⋮12\);\(36b⋮12\)
nên \(12a+36b⋮12\)
Mà \(12a+36b=\left(11a+2b\right)+\left(a+34b\right)\)
nên \(\left(11a+2b\right)+\left(a+34b\right)⋮12\)
\(11a+2b⋮12\)\(\Rightarrow a+34b⋮12\)( \(A+B⋮C\)mà\(B⋮C\)\(\Rightarrow A⋮C\))
d) 1\(12b⋮12\)là điều hiển nhiên nên thiếu giả thiết để chứng minh
P/S Sai đề rất nhiều, mong bạn trước khi đăng hãy kiểm tra lại đề hoặc xem thử có bị cô troll hay không
\(23a+13b+17c=14a+9a+7b+6b+14c+3c=.\)
\(=\left(14a+7b+14c\right)+\left(9a+6b+3c\right)\)
\(=7\left(2a+b+2c\right)+3\left(3a+2b+c\right)\)
Ta có
\(7\left(2a+b+2c\right)\)chia hết cho 7
\(3a+2b+c\)chia hết cho 7 nên \(3\left(3a+2b+c\right)\)chia hết cho 7
\(\Rightarrow23a+13b+17c\)chia hết cho 7
\(3a+2b+c⋮7\)
\(\Leftrightarrow30a+20b+10c⋮7\)
\(\Leftrightarrow\left(7a+7b-7c\right)+\left(23a+13b+17c\right)⋮7\)
\(\Leftrightarrow7\left(a+b-c\right)+\left(23a+13b+17c\right)⋮7\)
Ta thấy \(7\left(a+b-c\right)⋮7\)
Để \(7\left(a+b-c\right)+\left(23a+13b+17c\right)⋮7\Leftrightarrow23a+13b+17c⋮7\)(đpcm)