B = \(\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)...\left(\frac{1}{99}-1\right).\left(\frac{1}{100}-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)..........\left(\frac{1}{99}+1\right)\)
\(=\frac{3}{2}.\frac{4}{3}.........\frac{100}{99}\)
\(=\frac{100}{2}=50\)
\(B=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right).........\left(\frac{1}{100}-1\right)\)
\(=-\frac{1}{2}.-\frac{2}{3}..........-\frac{99}{100}\)
\(=\frac{-1}{100}\)
\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)......\left(\frac{1}{99}+1\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
\(=\frac{3.4.5.....100}{2.3.4.....99}\)
\(=\frac{100}{2}=50\)
\(\left(\frac{1}{2}-1\right):\left(\frac{1}{3}-1\right):....:\left(\frac{1}{100}-1\right)\text{ có số số lẻ thừa số âm nên bằng:}\)
\(-\left[\left(1-\frac{1}{2}\right):\left(1-\frac{1}{3}\right):...\left(1-\frac{1}{100}\right)\right]=-\left[\frac{1}{2}:\frac{2}{3}:\frac{3}{4}:......:\frac{99}{100}\right]=-\left(\frac{1.3.4...100}{2.2.3...99}\right)=-50\)
a) \(=\frac{3}{2}.\frac{4}{3}....\frac{100}{99}=\frac{100}{2}=50\)
a) =3/2 . 4/3 . 5/4 ...100/99
=\(\frac{3.4.5...100}{2.3.4..99}\)
=\(\frac{100}{2}\)
b) =
1, A=\(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{100}{99}\)
A= \(\frac{100}{2}\)
A=50
2, B=\(\frac{-1}{2}.\frac{-2}{3}....\frac{-98}{99}\)
B= \(\frac{1}{99}\)
\(A=\left(\frac{1}{2}+1\right)\cdot\left(\frac{1}{3}+1\right)\cdot\left(\frac{1}{4}+1\right)......\left(\frac{1}{99}+1\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}......\frac{99}{98}\cdot\frac{100}{99}\)
\(=\frac{100}{2}\)
\(=50\)
\(B=\left(\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}-1\right)\cdot\left(\frac{1}{4}-1\right)......\left(\frac{1}{99}-1\right)\)
\(=\left(-\frac{1}{2}\right)\cdot\left(-\frac{2}{3}\right)\cdot\left(-\frac{3}{4}\right).....\left(-\frac{97}{98}\right)\cdot\left(-\frac{98}{99}\right)\)
\(=-\frac{1}{99}\)
\(B=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{99}-1\right)\left(\frac{1}{100}-1\right)\)
\(\Rightarrow B=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}...\frac{-98}{99}.\frac{-99}{100}\)
\(\Rightarrow B=\frac{-\left(1.2.3...98.99\right)}{2.3.4...99.100}\)
\(\Rightarrow B=\frac{-1}{100}\)
=-1/100