rút gọn A=\(\frac{\left(a+b+c\right)^5-a^5-b^5-c^5}{\left(a+b+c\right)^3-a^3-b^3-c^3}\)giúp mình nhanh nhanh đi huhu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giúp minh đi mấy mem: rút gọn A= \(\frac{\left(a+b+c\right)^5-a^5-b^5-c^5}{\left(a+b+c\right)^3-a^3-b^3-c^3}\)
\(A=\frac{a^2.a^7.b^2.c^8}{a^5.b^3.\left(-c\right)^4}=\frac{a^9.b^2.c^8}{a^5.b^3.c^4}=\frac{a^4.c^4}{b}\)
\(B=\left(\frac{3}{7}\right)^5.\frac{\left(25\right)^4.7^5}{15^4.20^2}=\frac{3^5.\left(5^2\right)^4.7^5}{7^5.\left(3.5\right)^4.\left(4.5\right)^2}=\frac{3^5.5^8.7^5}{7^5.3^4.5^4.4^2.5^2}\)
\(=\frac{3^5.5^8.7^5}{7^5.3^4.5^6.4^2}=\frac{3.5^2}{4^2}=\frac{75}{16}\)
Ta có \(P=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2-ab+b^2+b^2-bc+c^2+c^2-ac+a^2}\)
\(=\frac{5\left(...\right)}{2\left(...\right)}=\frac{5}{2}\)
Đặt \(b-c=x,c-a=y,a-b=z\)
\(\Rightarrow x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)
\(\Rightarrow\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3=3\left(b-c\right)\left(c-a\right)\left(a-b\right)\)(1)
Ta có:
: \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2\left(c-b+b-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2\left(c-b\right)+b^2\left(b-a\right)+c^2\left(a-b\right)\)
\(=\left(b-c\right)\left(a^2-b^2\right)+\left(a-b\right)\left(c^2-b^2\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a+b\right)+\left(a-b\right)\left(c-b\right)\left(c+b\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a+b-c-b\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a-c\right)\)(2)
Từ (1) và (2) giá trị biểu thức cần tìm là -3.
Chúc bạn học tốt
Sửa đề: \(P=\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
\(P=\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
\(P=\frac{\left(a+b\right)^3+c^3-3abc-3a^2b-3ab^2}{a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2}\)
\(P=\frac{\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right).c+c^2\right]-3ab\left(a+b+c\right)}{2.\left(a^2+b^2+c^2-ab-bc-ca\right)}\)
\(P=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc+3ab\right)}{2.\left(a^2+b^2+c^2-ab-bc-ca\right)}\)
\(P=\frac{5\left(a^2+b^2+c^2-ab-ac-bc\right)}{2.\left(a^2+b^2+c^2-ab-bc-ca\right)}\)( a+b+c=0)
\(P=\frac{5}{2}\left[\left(a^2+b^2+c^2-ab-bc-ca\right)\ne0\right]\)
Ko phải ko ai mún giúp bn nhưng mà BÀI này... QUÁ KHÓ
Chúc bn sớm giải dc nha, chứ mik thì chắc là bó tay r đó!!!
bài này mình học là xài hẳng đẳng thức nâng cao đây bạn, có vẻ khó:)