Luyện tập – Vận dụng 1
Tính
a) \({\log _3}81\)
b) \({\log _{10}}\frac{1}{{100}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=log_35^2-log_350+log_36\)
\(=log_3\left(\dfrac{25}{50}\cdot6\right)=log_33=1\)
a, Điều kiện: x > 0
\(log_3\left(x\right)< 2\\ \Rightarrow0< x< 9\)
b, Điều kiện: x > 5
\(log_{\dfrac{1}{4}}\left(x-5\right)\ge-2\\ \Rightarrow x-5\le16\\ \Leftrightarrow5< x\le21\)
a) \(\ln\left(\sqrt{5}+2\right)+\ln\left(\sqrt{5}-2\right)=ln\left(\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)\right)=\ln\left(\left(\sqrt{5}\right)^2-2^2\right)=ln\left(5-4\right)=\ln1=\ln e^0=1\)
b) \(\log400-\log4=\log\dfrac{400}{4}=\log100=\log10^{10}=10.\log10=10.1=10\)
c) \(\log_48+\log_412+\log_4\dfrac{32}{2}=\log_4\left(8.12.\dfrac{32}{2}\right)=\log_4\left(1024\right)=\log_44^5=5.\log_44=5.1=5\)
a: \(=ln_2\left[\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)\right]=ln1=0\)
b: \(=log\left(\dfrac{400}{4}\right)=log\left(100\right)=10\)
c: \(=log_4\left(8\cdot12\cdot\dfrac{32}{3}\right)=log_4\left(32\cdot32\right)=5\)
a) \(\log_4\sqrt[5]{16}=\log_4\left(4^2\right)^{\dfrac{1}{5}}=\log_44^{\dfrac{2}{5}}=\dfrac{2}{5}\log_44=\dfrac{2}{5}.1=\dfrac{2}{5}\)
b) \(36^{\log_68}=\left(6^2\right)^{\log_68}=6^{2\log_68}=6^{\log_68^2}=8^2=64\)
a: \(log_4\sqrt[5]{16}=log_4\sqrt[5]{4^2}=\dfrac{2}{5}\)
b: \(36^{log_68}=6\cdot^{2\cdot log_68}=8^2=64\)
a) \(log_69+log_64=log_636=2\)
b) \(log_52-log_550=log_5\left(2:50\right)=-2\)
c) \(log_3\sqrt{5}-\dfrac{1}{2}log_550=-1,0479\)
a) \(log_216=4\)
b) \(log_3\dfrac{1}{27}=-3\)
c) \(log1000=3\)
d) \(9^{log_312}=144\)
Vì \(\dfrac{1}{e}\simeq0,368< 1\)
\(\Rightarrow y=log_{\dfrac{1}{e}}\left(x\right)\) nghịch biến trên D = \(\left(0;+\infty\right)\)
Chọn C.
0<1/e<1
=>\(log_{\dfrac{1}{e}}\left(x\right)\) nghịch biến
=>C
a) \(\log_381=\log_33^4=4\log_33=4.1=4\)
b) \(\log_{10}\dfrac{1}{100}=\log_{10}10^{-2}=-2\log_{10}10=-2.1=-2\)
a: \(log_381=4\)
b: \(log_{10}\left(\dfrac{1}{100}\right)=-2\)