Cho tam giác ABC cân ở B. Qua A kẻ đường thẳng xy song song với BC. Trên xy lấy điểm M bất kì (M khác A) . CMR chu vi tam giác ABC nhỏ hơn chu vi tam giác MBC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi N là giao điểm của DC và xy
=>N là trung điểm của DC và DC vuông góc với AM tại N
Xét ΔDBC có
N là trung điểm của DC
NA//BC
Do đó; A là trung điểm của BD
hay B,A,D thẳng hàng
b:
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
a/ ta có M= <ACD ( cùng phụ với <ADC)
mà <M+ < MEA= 90
<ACD+ <ADC= 90
suy ra : <MEA=<ADC
xét tam giác MEA và ACD :
<MEA=<ADC(cmt)
AE=AD
2 tam giác này bằng nhau thep trường hợp : cạn góc vuông - góc nhọn kề
Ta có : \(A\widehat{_1}\)=\(\widehat{ADE}\)( 2 góc so le trong , DE // AB ) (1)
\(\widehat{A_1}=\widehat{A_2}\) ( Góc phân giác của góc A ) (2)
Từ ( 1) và (2) suy ra : \(\widehat{ADE}\)=\(\widehat{A_2}\)
=> \(\Delta\)ADE là tam giác cân
khong the chung minh cau lay o dau vay