Tính tổng
1+ 4+ 9 +16 +25+ 36+....+100000
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nguyễn văn thành
Số số hạng của dãy là
(100000-1):3+1=3334(số hạng)
Tổng của dãy trên là
(100000+1)x3334:2=(tự tính)
Đáp số ......
1/
\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)
\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)
Đặt
\(A=1.2+2.3+3.4+...+99.100\)
\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)
\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)
\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)
Đặt
\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)
\(\Rightarrow N=A-B\)
2/
Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được
\(A=1^2+2^2+3^2+...+100^2\)
Tính như câu 1
3/ Làm như bài 4
4/
\(S=1^2+3^2+5^2+...+99^2=\)
\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)
\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)
Đặt
\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\)
Đặt
\(A=1.3+3.5+5.7+...+99.101\)
\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)
\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)
\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)
\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)
\(\Rightarrow S=A-2B\)
Bài 1:
\(N=1^2+2^2+3^3+...+99^2\)
\(N=1.1+2.2+3.3+...+99.99\)
\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)
\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)
\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)
Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)
+) Tính \(A=1.2+2.3+3.4+...+99.100\)
Ta có:
\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(3A=99.100.101\)
\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)
+) Tính \(B=1+2+3+...+99\)
\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)
\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)
\(\Rightarrow N=A-B=333300-4950=328350\)
\(\Rightarrow N=328350\)
\(M=\frac{1}{10}+\frac{4}{20}+\frac{9}{30}+\frac{16}{40}+...+\frac{81}{90}\)
\(M=\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+\frac{4}{10}+...+\frac{9}{10}\)
\(M=\frac{\left(9+1\right)\cdot\left(9-1+1\right):2}{10}\)
\(M=\frac{10\cdot9:2}{10}=4,5\)
\(\frac{1}{10}+\frac{4}{20}+\frac{9}{30}+.....+\frac{81}{90}\)
\(=\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+...+\frac{9}{10}\)
\(=\frac{\left(9+1\right)\times\left(9+1-1\right):2}{10}\)
\(=\frac{10\times9:2}{10}\)
\(=\frac{45}{10}=4,5\)
1+4+9+16+25+....+100
Theo quy luật:
12+22+32+42+52+...+102
=385
Ta có: \(\dfrac{1}{5}+\dfrac{4}{10}+\dfrac{9}{15}+\dfrac{16}{20}+\dfrac{25}{25}+\dfrac{36}{30}+\dfrac{49}{35}+\dfrac{64}{40}+\dfrac{81}{45}\)
\(=\dfrac{1}{5}+\dfrac{2}{5}+\dfrac{3}{5}+\dfrac{4}{5}+\dfrac{5}{5}+\dfrac{6}{5}+\dfrac{7}{5}+\dfrac{8}{5}+\dfrac{9}{5}\)
\(=\dfrac{45}{5}=9\)
TONG LA:
(100000+1) * (100000-1):(4-1)+1 :2 =16667116667
Số số hạng của dãy số là :
( 100000 - 1 ) : 3 + 1 = 33334 ( số )
Tổng của dãy số là :
( 100000 + 1 ) x 33334 : 2 = 1666716667
Đ/S : .........