K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

xin lỗi mk mới hc lp 7 ko thể giúp bn đc !

31 tháng 8 2021
Tham KhảoKẻ phân giác AD,BK vuông góc với AD 
sin A/2=sinBAD 
xét tam giác AKB vuông tại K,có: 
sinBAD=BK/AB (1) 
xét tam giác BKD vuông tại K,có 
BK<=BD thay vào (1): 
sinBAD<=BD/AB(2) 
lại có:BD/CD=AB/AC 
=>BD/(BD+CD)=AB/(AB+AC) 
=>BD/BC=AB/(AB+AC) 
=>BD=(AB*BC)/(AB+AC) thay vào (2) 
sinBAD<=[(AB*BC)/(AB+AC)]/AB 
= BC/(AB + AC) 
=>ĐPC
13 tháng 7 2016

A B C H K

Từ A kẻ đường cao AH (H thuộc BC) , Từ B kẻ đường cao BK (K thuộc AC)

Ta có : \(sinA=\frac{BK}{AB}\) ; \(sinB=\frac{AH}{AB}\) ; \(sinC=\frac{AH}{AC}\)

\(\Rightarrow\frac{AB}{sinC}=\frac{AB}{\frac{AH}{AC}}=\frac{AB.AC}{AH}\) ; \(\frac{AC}{sinB}=\frac{AC}{\frac{AH}{AB}}=\frac{AB.AC}{AH}\)

\(\Rightarrow\frac{c}{sinC}=\frac{b}{sinB}\) (1)

Lại có : \(BK=sinC.BC\Rightarrow\frac{BC}{sinA}=\frac{BC}{\frac{BK}{AB}}=\frac{BC.AB}{BK}=\frac{AB.BC}{sinC.BC}=\frac{AB}{sinC}\)

\(\Rightarrow\frac{a}{sinA}=\frac{c}{sinC}\) (2)

Từ (1) và (2) ta có : \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\) (Đpcm)

13 tháng 7 2016

mik k hieu lam!

5 tháng 6 2018

Kẽ đường cao AH

\(\Rightarrow\hept{\begin{cases}sinB=\frac{AH}{c}\\sinC=\frac{AH}{b}\end{cases}}\)

\(\Rightarrow AH=c.sinB=b.sinC\)

\(\Rightarrow\frac{b}{sinB}=\frac{c}{sinC}\)

Tương tự ta cũng có

\(\frac{b}{sinB}=\frac{a}{sinA}\)

\(\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)

19 tháng 10 2017

Ta có: 

\(\frac{a}{sinA}=\frac{a}{\frac{h_b}{c}}=\frac{ac}{h_b}=\frac{ac}{\frac{2S}{b}}=\frac{abc}{S}\left(1\right)\)

Tương tự ta cũng có:

\(\hept{\begin{cases}\frac{b}{sinB}=\frac{abc}{2S}\left(2\right)\\\frac{c}{sinC}=\frac{abc}{2S}\left(3\right)\end{cases}}\)

Từ (1), (2), (3) \(\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)

18 tháng 10 2017

k mik mik giai cho

24 tháng 10 2017

A B C H K

Từ A kẻ đường cao AH, H thuộc BC. Từ B kẻ đường cao BK, K thuộc AC

Ta có: \(\sin A=\frac{BK}{AB};\sin B=\frac{AH}{AB};\sin C=\frac{AH}{AC}\)

\(\Rightarrow\frac{AB}{\sin C}=\frac{AB}{\frac{AH}{AC}}=\frac{AB.AC}{AH}\)

\(\Rightarrow\frac{AC}{\sin B}=\frac{AC}{\frac{AH}{AB}}=\frac{AB.AC}{AH}\)

\(\Rightarrow\frac{c}{\sin C}=\frac{b}{\sin B}1\)

Lại có:

\(BK=\sin C.BC\Rightarrow\frac{BC}{\sin A}=\frac{BC}{\frac{BK}{AB}}=\frac{BC.AB}{BK}=\frac{AB.BC}{\sin C.BC}=\frac{AB}{\sin C}\)

\(\Rightarrow\frac{a}{\sin A}=\frac{c}{\sin C}2\)

Từ 1 và 2, ta có:

\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)

\(\RightarrowĐPCM\)

19 tháng 1 2021

\(S_{ABC}=\frac{bc\sin A}{2}=\frac{ac\sin B}{2}=\frac{ab\sin C}{2}=\frac{abc}{4R}\)

+ Từ \(\frac{bc\sin A}{2}=\frac{ac\sin B}{2}\Rightarrow b\sin A=a\sin B\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}\left(1\right)\)

+ Từ \(\frac{ac\sin B}{2}=\frac{ab\sin C}{2}\Rightarrow c\sin B=b\sin C\Rightarrow\frac{b}{\sin B}=\frac{c}{\sin C}\left(2\right)\)

+ Từ \(\frac{bc\sin A}{2}=\frac{abc}{4R}\Rightarrow\sin A=\frac{a}{2R}\Rightarrow\frac{a}{\sin A}=2R\left(3\right)\)

Từ (1) (2) (3) \(\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\left(dpcm\right)\)

A B C H K

Từ A kẻ đường cao AH (H thuộc BC) , Từ B kẻ đường cao BK (K thuộc AC)

Ta có : sinA=BKAB ; sinB=AHAB ; sinC=AHAC

⇒ABsinC=ABAHAC=AB.ACAH ; ACsinB=ACAHAB=AB.ACAH

⇒csinC=bsinB (1)

Lại có : BK=sinC.BC⇒BCsinA=BCBKAB=BC.ABBK=AB.BCsinC.BC=ABsinC

⇒asinA=csinC (2)

Từ (1) và (2) ta có : asinA=bsinB=csinC (Đpcm)

thế hồn bay mất lun ha !!!