1)Chứng 235 + 2312 + 232003 không là số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Một số được coi là scp nếu khi phân tích ra dạng các thừa số nguyên tố thì số mũ ứng với mỗi thừa số nguyên tố đó phải chẵn.
$23^5+23^{12}+23^{2003}=23^5(1+23^7+23^{1998})$ chia hết cho $23^5$ nhưng không chia hết cho $23^6$ (do $1+23^7+23^{1998}\not\vdots 23$)
Tức là khi phân tích ra thừa số nguyên tố thì $23^5+23^{12}+23^{2003}$ chứa thừa số nguyên tố là 23 nhưng số mũ tối đa là 5 (là số lẻ)
Do đó số trên không phải scp.
câu trả lời là không nhé.. ta có thể chứng minh:
Giả sử : A,B là 2 số chính phương... \(\sqrt{A}=a\)
\(\sqrt{B}=b\) c là số không chính phương.
tích A.B.c.......... \(\sqrt{A.Bc}=a.b\sqrt{c}\)mà c ko là số chính phương suy ra tích 3 số này ko là số chính phương nha
2.
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Gỉa sử có 1 số chính phương lớn hơn 0 là a, sao cho a2+1=b2
=>a2 và b2 là 2 số liên tiếp.
=>a và b là 2 số liên tiếp.
=>b=a+1
=>a2+1=(a+1)2
=>a2+1=a.(a+1)+a+1
=>a2+1=a2+a+a+1
=>a2+1=(a2+2)+2a
=>0=2a
=>a=0
mà a là số tự nhiên lớn hơn 0=>a khác 0.
=>vô lí
=>Số chính phương lớn hơn 0 cộng thêm 1 thì không phải là số chính phương.
=>ĐPCM
Gọi 5 số chính phương liên tiếp là: \(\left(n-2\right)^2;\left(n-1\right)^2;n^2;\left(n+1\right)^2;\left(n+2\right)^2\)
Ta có: \(\left(n-2\right)^2+\left(n-1\right)^2+n^2+\left(n+1\right)^2+\left(n+2\right)^2=5n^2+10\)
\(=5\left(n^2+2\right)\)
Để tổng này là số chính phương thì n2 + 2 phải chia hết cho 5 hay n2 + 2 có tận cùng là 0, hoặc 5, hay n2 phải có tận cùng là 3, hoặc 8.
Mà n2 là số chính phương nên không bao giờ có số tận cùng là 3 hoặc 8.
Vậy tổng của 5 số chính phương liên tiếp khác 0 không thể là 1 số chính phương