Chứng minh 1/2! + 2/3! + 3/4! +...+ 99/100! < 5/6
MÌNH CẦN CÂU TRẢ LỜI GẤP NHA MỌI NGƯỜI!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(S=2+2^2+.....+2^{100}\)
\(\Rightarrow2S=2^2+2^3+....+2^{101}\)
\(\Rightarrow2S-S=\left(2^2+2^3+.....+2^{101}\right)-\left(2+2^2+....+2^{100}\right)\)
\(\Rightarrow S=2^{101}-2\)
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
Bài này cũng khó:
1/2! +2/3! +3/4! +... + 99/100!
= (1/1! -1/2!) + (1/2! - 1/3!) + (1/3! -1/4!) + .... + (1/99! -1/100!)
=1 - 1/100! <1
Gọi số tự nhiên n. Ta có:
\(\frac{n-1}{n!}=\frac{n+1-1}{n!}=\frac{n+1}{n!}-\frac{1}{n!}=\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\).
Thay n lần lượt bằng 2,3,...,100.Ta có A = \(\frac{1}{1!}-\frac{1}{100!}<1\Rightarrow A<1\)
Lời giải:
$T = \frac{1}{7^2}+\frac{2}{7^3}+\frac{3}{7^4}+....+\frac{99}{7^{100}}$
$7T = \frac{1}{7}+\frac{2}{7^2}+\frac{3}{7^3}+....+\frac{99}{7^{99}}$
$\Rightarrow 6T=7T-T = \frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{99}}-\frac{99}{7^{100}}$
$42T = 1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{98}}-\frac{99}{7^{99}}$
$\Rightarrow 42T-6T = 1-\frac{100}{7^{99}}+\frac{99}{7^{100}}$
$\Rightarrow 36T = 1-\frac{601}{7^{100}}< 1$
$\Rightarrow T< \frac{1}{36}$
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{99\cdot100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
Câu hỏi của Lysandra - Toán lớp 6 - Học toán với OnlineMath