Giúp mk vs tìm GTNN của M=x^2-3x+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt biểu thức trên là A.ta có
Amin khi và chỉ khi \(3x^2\)min.....vì \(3x^2\)\(\ge1\)v x
Nên \(3x^2\)min = 1
\(3x^2-3x=1-3.x=-2x\)
vậy Amin=-2x
Bài làm:
Ta có: \(5\left(m-3\right)^2-5\)
\(\ge-5\left(\forall m\right)\)
Dấu "=" xảy ra khi: \(\left(m-3\right)^2=0\Rightarrow m=3\)
Vậy \(Min=-5\Leftrightarrow m=3\)
\(5\left(m-3\right)^2-5\)
Ta có : \(5\left(m-3\right)^2\ge0\forall m\Rightarrow5\left(m-3\right)^2-5\ge-5\)
Dấu " = " xảy ra <=> m - 3 = 0 => m = 3
Vậy GTNN của biểu thức = -5, đạt được khi m = 3
Max:
\(M=\frac{x^2+xy+y^2}{x^2+y^2}=1+\frac{xy}{x^2+y^2}\le1+\frac{xy}{2\left|xy\right|}\le1+\frac{xy}{2xy}=1+\frac{1}{2}=\frac{3}{2}\)
Dấu "=" xảy ra tại x=y
M = |x - 2016| + |x - 2017|
<=> M = |x - 2016| + |-x + 2017| \(\ge\) |x - 2016 - x + 2017| = |1| = 1
When x = 2016 or x = 2017
Nếu không có thêm điều kiện gì của x (ví dụ x>0) thì biểu thức này không tồn tại GTNN
Ta có |2-3x| >=0 với mọi x
=> 2020+|2-3x| >=2020
Dấu "=" xảy ra <=> |2-3x|=0
<=> 3x=2
<=> \(x=\frac{2}{3}\)
Vậy MinA=2020 đạt được khi \(x=\frac{2}{3}\)
câu 1
x^2 -5x +y^2+xy -4y +2014
=(y^2+xy +1/4x^2) -4(y+1/2x)+4 +3/4x^2-3x+2010
=(y+1/2x-2)^2 +3/4(x^2-4x+4)+2007
=(y+1/2x-2)^2 +3/4(x-2)^2 +2007
GTNN là 2007<=> x=2 và y=1
M= \(x^2-3x+5=x^2-2\times\frac{3}{2}\times x+\frac{9}{4}-\frac{9}{4}+5\)
M = \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)
Vì \(\left(x-\frac{3}{3}\right)^2\ge0\)
=> \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Vậy MIN M = \(\frac{11}{4}\)dấu bằng xảy ra khi và chỉ khi \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
\(M=x^2-3x+5=\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}\right)+5-\frac{9}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Vậy \(MinM=\frac{11}{4}\Leftrightarrow\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)