\(\left(x+1\right)^2\left(x-5\right)\left(x+4\right)< 0\)
Giúp mk với ai trả lời đúng mk tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-1\right)^2-3.\left(x+2\right)^2=4.\left(x-2\right)-5.\left(x-1\right)^2\)
\(\Leftrightarrow4x^2-4x+1-3\left(x^2+4x+4\right)=4x-8-5.\left(x^2-2x+1\right)\)
\(\Leftrightarrow4x^2-4x+1-3x^2-7x-12=4x-8-5x^2+10x-5\)
\(\Leftrightarrow x^2-11x-11=14x-13-5x^2\)
\(\Leftrightarrow6x^2-25x+2=0\)
Tự làm tiếp nha
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
Lớp 8 nên sử dụng hằng đẳng thức
(=) X3 +3x2 +y3+5y2-x3-y3=0
(
\(3\left(2x-6\right)-4\left(1+2x\right)-2\left(x-4\right)=4-3\left(1+2x\right)-5\left(1-2x\right).\)
\(\Leftrightarrow6x-18-4-8x-2x+8=4-3-6x-5+10x\)
\(\Leftrightarrow-4x-14=4x-4\)
\(\Leftrightarrow-4x-4x=-4+14\)
\(\Leftrightarrow-8x=10\)
\(\Leftrightarrow x=-\frac{5}{4}\)
3.2x - 3.6 - 4+4.2x - 2x-2.(-4) = 4 - 3+3.2x - 5-5.(-2x)
6x -18 -4 +8x -2x +8 = 4 -3 +6x -5 +10x
6x +8x -2x -18-4+8 = 4-3-5+6x+10x
12x-22 = -4+16x
12x-16x = -4+22
-4x = 18
x = 18: (-4)
x = -4,5
Mình không chắc là đúng đâu đấy, tại giải vội quá, nếu sai thì ming bạn thông cảm ^.^
Để D nhỏ nhất thì I x^2 + 5 I phải có kết quả dương nhỏ nhất .
=> x = 0
I y + 4 I đạt giá trị nhỏ nhất khi y = -4
Vậy GTNN của biểu thức trên là 5
E đạt giá trị nhỏ nhất khi x = 1
y - 4 có giá trị nhỏ nhất là 0 nên y = -4
Vậy GTNN của biểu thức trên là 5
Ta có: E=|x-1|+|x-2|+|x-3|+|x-4|=(|x-1|+|3-x|)+(|x-2|+|4-x|) \(\ge\) 2+2 = 4
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(4-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le3\\2\le x\le4\end{cases}\Leftrightarrow}2\le x\le3}\)
Vậy MinE = 4 khi \(2\le x\le3\)
1/
\(A\)dương \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-\frac{1}{2}\right)>0\\x-\frac{4}{5}>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0+\frac{1}{2}\\x>0+\frac{4}{5}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>\frac{1}{2}\\x>\frac{4}{5}\end{cases}}\Leftrightarrow x>0,8\)
2/ Làm tương tự nhưng có 2 trường hợp nên bạn làm từng trường hợp nhé ..!