K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 8 2023

Lời giải:

$a$ chia 3 dư 1 nên $a$ có dạng $a=3k+1$ với $k\in\mathbb{N}$

$b$ chia $3$ dư 2 nên $b$ có dạng $b=3m+1$ với $m\in\mathbb{N}$

$\Rightarrow a+b=3k+1+3m+2=3k+3m+3=3(k+m+1)\vdots 3$

8 tháng 10 2017

Bài 45 :

a ) Theo bài ra ta có :

a = 9.k + 6

a = 3.3.k + 3.2

\(\Rightarrow a⋮3\)

b ) Theo bài ra ta có :

a = 12.k + 9 

a = 3.4.k + 3.3

\(\Rightarrow a⋮3\)

Vì : \(a⋮3\Rightarrow a⋮6\)

c ) Ta thấy :

30 x 31 x 32 x ...... x 40 + 111

= 37 x 30 x ....... x 40 + 37 x 3

\(\Rightarrow\left(30.31.32......40+111\right)⋮37\)

Bài 46 :

a ) số thứ nhất là n số thứ 2 là n+1 
tích của chúng là 
n(n+1) 
nếu n = 2k ( tức n là số chẵn) 
tích của chúng là 
2k.(2k+1) thì rõ rảng số này chia hết cho 2 nên là sỗ chẵn
nếu n = 2k +1 ( tức n là số lẻ)
tích của chúng là 
(2k+1)(2k+1+1) = (2k+1)(2k+2) = 2.(2k+1)(k+1) số này cũng chia hết cho 2 nên là số chẵn 

Mà đã là số chẵn thì luôn chia hết cho 2 nên tích 2 stn liên tiếp luôn chia hết cho 2

b ) Nếu n là số lẻ thì : n + 3 là số chẵn 

Mà : số lẻ nhân với số chẵn thì sẽ luôn chia hết cho 2

Nếu n là số chẵn thì :

n . ( n + 3 ) luôn chi hết cho 2 

c ) Vì n ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là : 0 ; 2 ; 4 ; 6 

Do đó n(n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7

Vì 1 ; 3 ; 7 không chia hết cho 2 

Vậy n2 + n + 1 không chia hết cho 2 

11 tháng 11 2018

a)Đặt: A= 3k+1

B= 3k+2

Ta có:

A.B=( 3k+1). (3k+2)

= 3k. (3k+2)+ 3k+2

Vì 3k( 3k+2) +3k sẽ chia hết cho 3. Mà 2 chia 3 dư 2 nên khi cộng với nhau sẽ ra kết quả chia 3 dư 2.

Vậy A.B chia 3 dư 2.

11 tháng 11 2018

Câu b đúng đề bài chưa? 4 STN hay 4 STN liên tiếp?

13 tháng 10 2016

THÔI TỰ ĐI MÀ LÀM NHÌN THẤY LÀ ĐÃ GIẬT MÌNH RỒI DÀI DẰNG DẶC AI MÀ LÀM HẾT ĐƯỢC CÁC BẠN NHỈ !

13 tháng 10 2016

1 / 

B = 15 + 17 - 16

B = 16

mà 16 không chia hết cho 12 , nên không cần chứng minh cũng ra

2 / 

 a ) N = 1 đó

 b ) N = 1 đó

cách dễ nhất là cứ cho N = 1 , vì bao nhiêu lần 1 thực hiện phép tính chia thì chắng chia hết cho 1

còn lại tương tự nhé !

mình còn làm violympic nữa

7 tháng 12 2016

mi tích tau tau tích mi xong tau trả lời nka

 việt nam nói là làm

14 tháng 11 2015

gọi số cân tìm là a

ta có a chia cho 3 dư 1 suy ra  a+2 chia hết cho 3

         a chia cho 4 dư 2 suy ra a+2 chia hết cho 4

         a chia cho 5 dư 3 suy ra a+2 chia hết cho 5

         a chia cho 6 dư 4 suy ra a+2 chia hết cho 6

suy ra (a+2) là BC(3,4,5,6)= 60=B(60)=(0,60,120,180,240,300,360,420,540........0

a thuộc (58,118,178,238,298,358,418,538....

suy ra a=598

 

14 tháng 11 2023

a, Vì số đó chia cho 6 dư 5; chia 19 dư 2 nên khi ta thêm vào số đó 55 đơn vị thì trở thành số chia hết cho cả 6 và 19

Ta có: \(\left\{{}\begin{matrix}a+55⋮6\\a+55⋮19\end{matrix}\right.\)  ⇒ a + 55 \(\in\) BC(6; 19) 

6 = 2.3; 19 = 19;       BCNN(6; 19) = 2.3.19 = 114

⇒ BC(6; 19) = {0; 114; 228; 342;...;}

\(\in\) { - 55; 59; 173;...;}

Vì a là số tự nhiên nhỏ nhất nên a = 59 

a + 55 \(\in\) B(114)

⇒ a = 114.k - 55 (k ≥1; k \(\in\) N)

14 tháng 11 2023

                      Bài 2: 

Vì số đó chia 5 dư 1 chia 21 dư 3 nên khi số đó thêm vào 39 đơn vị thì trở thành số chia hết cho cả 5 và 21

  Ta có: a + 39 ⋮ 5; a + 39 ⋮ 21 ⇒ a + 39 \(\in\) BC(5; 21)

    5 = 5; 21 = 3.7 BCNN(5; 21) = 3.5.7 = 105

      ⇒BC(5; 21) = {0; 105; 210;...;}

         a+ 39 \(\in\) {0; 105; 210;...;}

     a \(\in\) {-39; 66; 171;...;}

Vì a là số tự nhiên nhỏ nhất nên a = 66

a + 39 ⋮ 105

⇒ a = 105.k - 39 (k ≥1; k \(\in\) N)