Tìm các số nguyên \(x,y\) thỏa mãn \(3^x-y^3=1\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Xét \(x=0\Rightarrow y=0\), \(x=1\Rightarrow y^3=2\), vô lí. \(x=2\Rightarrow y=2\).
Với \(x\ge3\), ta viết lại pt đã cho như sau:
\(y^3=3^x-1\).
Ta thấy \(y\equiv2\left[3\right]\) \(\Rightarrow y=3z-1\left(z\inℕ^∗\right)\)
\(\Rightarrow\left(3z-1\right)^3=3^x-1\)
\(\Leftrightarrow27z^3-27z^2+9z-1=3^x-1\)
\(\Leftrightarrow27z^3-27z^2+9z=3^x\)
\(\Leftrightarrow9z^3-9z^2+z=3^{x-2}\)
\(\Leftrightarrow z\left(9z^2-9z+1\right)=3^{x-2}\)
Do \(9z^2-9z+1⋮̸3\) nên \(\left\{{}\begin{matrix}z=3^{x-2}\\9z^2-9z+1=1\end{matrix}\right.\), vô lí do \(z\inℕ^∗\)
Vậy với \(x\ge3\) thì pt đã cho không có nghiệm nguyên.
Do đó pt đã cho có cặp nghiệm nguyên \(\left(x,y\right)\in\left\{\left(0;0\right);\left(2;2\right)\right\}\)
- Nếu x < 0 => y không nguyên
- Nếu x = 0 => y = 0
- Nếu x = 1 => y không nguyên
- Nếu x = 2 => y = 2
- Nếu x > 2 pt => 3x = y3 + 1 ( Vì x > 2 => y3 > 9 )
Ta suy ra �3+1⋮9⇒�3÷9y3+1⋮9⇒y3÷9dư 1
⇒�=9�+2⇒y=9k+2hoặc �=9�+5y=9k+5hoặc �=9�+8y=9k+8( k là số nguyên dương ) (1)
Mặt khác, ta cũng có �3+1⋮3y3+1⋮3
⇒�=3�+2⇒y=3m+2( m nguyên dương ) (2)
Từ (1) và (2) => vô nghiệm ( Vì từ (2) ⇒�=9�+6⇒y=9n+6không thỏa (1) )
Vậy phương trình có 2 cặp nghiệm nguyên không âm là ( 0;0 ) và ( 2;2 )