K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2023

Áp dụng định lý pytago có:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\left(\dfrac{3}{2}AC\right)^2+AC^2=12^2\)

\(\Leftrightarrow AC=\dfrac{24\sqrt{13}}{13}\) cm

Suy ra \(AB=\dfrac{36\sqrt{13}}{13}\) cm

Vậy...

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2\cdot\dfrac{13}{9}=144\)

\(\Leftrightarrow AC^2=\dfrac{1296}{13}\)

\(\Leftrightarrow AC=\dfrac{36\sqrt{13}}{13}cm\)

\(\Leftrightarrow AB=\dfrac{24\sqrt{13}}{13}cm\)

Hình vẽ chỉ mang tính chất minh họa, bạn tham khảo nhé.

undefined

5 tháng 7 2017

áp dụng định lí PITAGO vào tam giác vuông ABC : \(AB^2+AC^2=BC^2\)

                                                                    \(\Leftrightarrow AB^2+\left(\frac{3}{2}AB\right)^2=12^2\)

                                                                        \(\Leftrightarrow\frac{13}{4}AB^2=12^2\Rightarrow AB=\frac{24\sqrt{13}}{13}\)

SUY RA \(AC=\frac{36\sqrt{13}}{13}\)

1 tháng 1 2022

Ta có:

\(AB=2AC\\ \Rightarrow AB^2=\left(2AC\right)^2=4AC^2\)

Áp dụng định lí Pythagoras vào tam giác ABC vuông tại A, ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow4AC^2+AC^2=15^2\)

\(\Rightarrow5AC^2=225\)

\(\Rightarrow AC^2=225:5=45\\ \Rightarrow AC=\sqrt{45}\left(cm\right)\)

\(\Rightarrow AB=2.AC=2.\sqrt{45}=\sqrt{180}\left(cm\right)\)

 

 

 

6 tháng 8 2017

Do tam giác ABC vuông tại A nên ta có biểu thức: \(AB^2+AC^2=BC^2\)
Thay các dữ kiện \(BC=12cm\) ; \(AB=\frac{2}{3}AC\) vào biểu thức trên ta được:
\(\left(\frac{2}{3}AC\right)^2+AC^2=12^2\)
\(\Rightarrow\frac{4}{9}AC^2+AC^2=144\)
\(\Rightarrow\frac{13}{9}AC^2=144\)
\(\Rightarrow AC^2=\frac{1296}{13}\)
Do AC là một cạnh tam giác nên \(AC>0\)\(\Rightarrow AC=\frac{36}{\sqrt{13}}cm\)
Khi đó:
\(AB=\frac{2}{3}AC\)
\(\Rightarrow AB=\frac{2}{3}\cdot\frac{36}{\sqrt{13}}\)
\(\Rightarrow AB=2\cdot\frac{12}{\sqrt{13}}\)
\(\Rightarrow AB=\frac{24}{\sqrt{13}}cm\)

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:

\(AC^2=BC^2+AB^2\)

\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)

hay \(AB=4\sqrt{5}cm\)

Vậy: \(AB=4\sqrt{5}cm\)

Bài 2: 

Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:

\(MP^2=MN^2+NP^2\)

\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)

hay MN=4cm

Vậy: MN=4cm

9 tháng 2 2021

Bài 1 :

- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)

\(\Leftrightarrow AB^2+8^2=12^2\)

\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )

Vậy ...

Bài 2 :

- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :

\(MN^2+NP^2=MP^2\)

\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)

\(\Leftrightarrow MN=4\) ( đvđd )

Vậy ...

 

 

28 tháng 7 2021

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AH^2=CH.BH\Rightarrow BH=\dfrac{AH^2}{CH}=\dfrac{144}{9}=16\)cm 

-> BC = CH + BH = 9 + 16 = 25 cm 

* Áp dụng hệ thức : \(AB^2=BH.BC=16.25=400\Rightarrow AB=20\)cm

Áp dụng đlí Pytago tam giác ABC vuông tại A 

\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=625-400=225\)

=> AC = 15 cm 

28 tháng 7 2021

Xét tam giác AHC vuông tại H, theo định lý Py-ta-go ta có:

AC2 = AH2 + HC2 = 122 + 92 = 225

\(\Rightarrow\) AC = \(\sqrt{225}\) = 15 (cm)

Xét tam giác ABC vuông tại A, đường cao AH, theo hệ thức lượng trong tam giác vuông ta có:

AC2 = BC.HC

\(\Leftrightarrow\) BC = \(\dfrac{AC^2}{HC}\) = \(\dfrac{15^2}{9}\) = 25 (cm)

Xét tam giác ABC vuông tại A, theo định lý Py-ta-go ta có:

BC2 = AB2 + AC2 

\(\Leftrightarrow\) AB2 = BC2 - AC2 = 252 - 152 = 400

\(\Rightarrow\) AB = \(\sqrt{400}\) = 20 (cm)

Vậy ...

Chúc bn học tốt!