tính tổng : M=1+ 3^2 +3^4 +3^6 ... +3^112
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=(-1+3)+(-5+7)+....+(2011-2013)
= 2+2+2+...+(-2)
= 1004+(-2)
= 1002
D= (2-4)+(6-8)+....+(2010-2012)
= -2+-2+-2+...1002+...+-2
= -502+1002
= 500
G=(1+2-3-4)+(5+6-7-8)+...+(109+110-111-112)+(113+114+115)
= -4+-4+-4+...+-4+342
=-112+342
= 230
1+2-3-4+5+6-7-8+...+111-112+113+114+115
=1+(2-3-4+5)+(6-7-8+9)+....................................+(110-111-112+113)+114+115
=230
a: 14/5-7/5=7/5
b: 7/8-1/3+5/4
=21/24-8/24+30/24
=43/24
c; =7/6+5/6+2/15+13/15
=2+1
=3
d: =4*5/3*11=20/33
e: =2/9*1/6*1/4=2/9*1/24=1/108
2:
a: \(=\dfrac{3}{9}\cdot\dfrac{4}{4}\cdot\dfrac{5}{5}\cdot\dfrac{6}{6}\cdot\dfrac{7}{7}=\dfrac{1}{3}\)
b: \(=\dfrac{1}{6}\left(\dfrac{22}{3}-\dfrac{2}{3}\right)=\dfrac{10}{3}\cdot\dfrac{1}{6}=\dfrac{10}{18}=\dfrac{5}{9}\)
c; \(=\dfrac{1}{3}\left(9-\dfrac{2}{5}-\dfrac{3}{5}\right)=\dfrac{8}{3}\)
Câu 1:
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)
\(A=\frac{1}{1\times1}+\frac{1}{2\times2}+\frac{1}{3\times3}+\frac{1}{4\times4}+.....+\frac{1}{50\times50}\)
\(A< \frac{1}{1\times1}+\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+.....+\frac{1}{49\times50}\)
\(A< 1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{49}-\frac{1}{50}\)
\(A< 2-\frac{1}{50}< 2\)
Câu 2:
\(S=3+\frac{3}{2}+\frac{3}{2^2}+.....+\frac{3}{2^9}\)
\(2S=6+3+\frac{3}{2}+.....+\frac{3}{2^8}\)
\(2S-S=\left(6+3+\frac{3}{2}+.....+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+.....+\frac{3}{2^9}\right)\)
\(S=6-\frac{3}{2^9}\)
\(S=\frac{3069}{512}\)
Câu 3:
\(\frac{1}{2\times3}=\frac{1}{6}\)
\(\frac{1}{2}-\frac{1}{3}=\frac{3}{6}-\frac{2}{6}=\frac{1}{6}\)
\(\Rightarrow\frac{1}{2\times3}=\frac{1}{2}-\frac{1}{3}\)
Câu 4:
\(M=\frac{9}{40}-\frac{11}{60}+\frac{13}{84}-\frac{15}{112}\)
\(M=\left(\frac{9}{40}-\frac{11}{60}\right)+\left(\frac{13}{84}-\frac{15}{112}\right)\)
\(M=\left(\frac{27}{120}-\frac{22}{120}\right)+\left(\frac{52}{336}-\frac{45}{336}\right)\)
\(M=\frac{1}{24}+\frac{1}{48}\)
\(M=\frac{2+1}{48}\)
\(M=\frac{3}{48}\)
\(M=\frac{1}{16}\)
Chúc bạn học tốt
câu 2:
s= 3+3/2+3/3^2+.....+3/2^9
=> 2s=6+3+3/2+...+3/2^8
=> 2s-s =( 6+3+3/2 + ....+3/2^8)- ( 3+3/2 +3/2^2+...+3/2^9)
=> s=6-3/2^9=3069/512
Hờ, bài toán này mà mình cứ ngồi tính tổng như thật -,-
\(\text{1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - 11 - 12 + ... - 111 - 112 + 113 + 114}\)\(=1+\left(2-3-4+5\right)+\left(6-7-8+9\right)+\left(10-11-12+13\right)+...+\left(110-111-112+113\right)+114\)\(=1+114=115\)
Lớp 5: chương trình nâng cao nhé các bạn! ko có số âm nhé!
\(M=1+3^2+3^4+3^6+...+3^{112}\)
\(\Rightarrow3M=3+3^3+3^5+3^7+...+3^{113}\)
\(\Rightarrow3M+M=1+3^2+3^4+3^5+...+3^{113}\)
\(\Rightarrow4M=\dfrac{3^{113+1}-1}{3-1}\)
\(\Rightarrow M=\dfrac{3^{114}-1}{2.4}=\dfrac{3^{114}-1}{8}\)