K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\dfrac{x}{2}+\dfrac{1-x}{3}>0\)

=>3x+2(1-x)>0

=>3x+2-2x>0

=>x+2>0

=>x>-2

b: (x-9)^2-x(x+9)<0

=>x^2-18x+81-x^2-9x<0

=>-27x+81<0

=>-27x<-81

=>x>3

7 tháng 8 2023

a) \(\left(x-3\right)^2+2x-6=0\)

\(\Leftrightarrow x^2-6x+9+2x-6=0\)

\(\Leftrightarrow x^2-4x+3=0\)

\(\Leftrightarrow x^2-x-3x+3=0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

b) \(\dfrac{x+3}{x-3}+\dfrac{48}{9-x^2}=\dfrac{x-3}{x+3}\) (ĐKXĐ: \(x\ne\pm3\))

\(\Leftrightarrow\dfrac{x+3}{x-3}-\dfrac{48}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-3}{x+3}\)

\(\Leftrightarrow\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}-\dfrac{48}{\left(x+3\right)\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}\)

\(\Leftrightarrow x^2+6x+9-48=x^2-6x+9\)

\(\Leftrightarrow x^2-x^2+6x+6x+9-9-48=0\)

\(\Leftrightarrow12x-48=0\)

\(\Leftrightarrow12x=48\)

\(\Leftrightarrow x=\dfrac{48}{12}\)

\(\Leftrightarrow x=4\left(tm\right)\)

a: (x-3)^2+2x-6=0

=>(x-3)^2+2(x-3)=0

=>(x-3)(x-3+2)=0

=>(x-3)(x-1)=0

=>x=3 hoặc x=1

b:

ĐKXĐ: x<>3; x<>-3

 \(\dfrac{x+3}{x-3}+\dfrac{48}{9-x^2}=\dfrac{x-3}{x+3}\)

=>\(\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\dfrac{48}{\left(x-3\right)\cdot\left(x+3\right)}=\dfrac{\left(x-3\right)^2}{\left(x+3\right)^2}\)

=>(x+3)^2-48=(x-3)^2

=>x^2+6x+9-48=x^2-6x+9

=>6x-39=-6x+9

=>12x=48

=>x=4(nhận)

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

Lời giải:

a. $x(3x+1)+(x-1)^2-(2x+1)(2x-1)=0$

$\Leftrightarrow (3x^2+x)+(x^2-2x+1)-(4x^2-1)=0$

$\Leftrightarrow 3x^2+x+x^2-2x+1-4x^2+1=0$

$\Leftrightarrow (3x^2+x^2-4x^2)+(x-2x)+(1+1)=0$

$\Leftrightarrow -x+2=0$

$\Leftrightarrow x=2$

b.

$(x+1)^3+(2-x)^3-9(x-3)(x+3)=0$

$\Leftrightarrow [(x+1)+(2-x)][(x+1)^2-(x+1)(2-x)+(2-x)^2]-9(x-3)(x+3)=0$

$\Leftrightarrow 3[x^2+2x+1-(x-x^2+2)+(x^2-4x+4)]-9(x-3)(x+3)=0$

$\Leftrightarrow 3(3x^2-3x+3)-9(x^2-9)=0$

$\Leftrightarrow 9(x^2-x+1)-9(x^2-9)=0$

$\Leftrightarrow 9(x^2-x+1-x^2+9)=0$
$\Leftrightarrow 9(-x+10)=0$

$\Leftrightarrow -x+10=0\Leftrightarrow x=10$

 

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

c.

$(x-1)^3-(x+3)(x^2-3x+9)+3x^2=25$

$\Leftrightarrow (x^3-3x^2+3x-1)-(x^3+3^3)+3x^2=25$

$\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2=25$
$\Leftrightarrow (x^3-x^3)+(-3x^2+3x^2)+3x-28=25$

$\Leftrightarrow 3x-28=25$

$\Leftrightarrow x=\frac{53}{3}$

d.

$(x+2)^3-(x+1)(x^2-x+1)-6(x-1)^2=23$
$\Leftrightarrow (x^3+6x^2+12x+8)-(x^3+1)-6(x^2-2x+1)=23$

$\Leftrightarrow x^3+6x^2+12x+8-x^3-1-6x^2+12x-6=23$

$\Leftrightarrow (x^3-x^3)+(6x^2-6x^2)+(12x+12x)+(8-1-6)=23$
$\Leftrightarrow 24x+1=23$

$\Leftrgihtarrow 24x=22$

$\Leftrightarrow x=\frac{11}{12}$

a: (x+1)^3-x(x-2)^2+x-1=0

=>x^3+3x^2+3x+1-x(x^2-4x+4)+x-1=0

=>x^3+3x^2+4x-x^3+4x^2-4x=0

=>7x^2=0

=>x=0

b: =>x^3-3x^2+3x-1-x^3-27+3x^2-12=2

=>3x=2+1+27+12=39+3=42

=>x=14

a: \(\Leftrightarrow3x\left(5x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{5}\end{matrix}\right.\)

17 tháng 2 2021

Rối quá bn ơioho

Bn ko dùng dấu enter để xuống dòng à 

17 tháng 2 2021

ơ sao lúc viết ấn enter hoài mà ko thấy hiện nhỉ

 

23 tháng 10 2021

e: ta có: \(4x^2+4x-6=2\)

\(\Leftrightarrow4x^2+4x-8=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)

f: Ta có: \(2x^2+7x+3=0\)

\(\Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)

25 tháng 10 2021

a) \(\left(2x-3\right)\left(2x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

b) \(x^2-1=0\Rightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

c) \(x^2-9=0\Rightarrow\left(x-3\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

d) \(\Rightarrow\left(2x-4\right)\left(2x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

2) \(\Rightarrow\left(5x-3\right)\left(5x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)