Bổ sung thêm các điều kiện để các khẳng định sau là đúng:
a)IaI=IbI\(\Rightarrow\)a=b
b)a>b\(\Rightarrow\)IaI>IbI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để a+b=IaI+IbI thì a,b\(\ge\)0
Để a+b=-(IbI-IaI) thì a\(\ge\)và b\(\le\)
Khi a + b = |a| + |b| thì:
\(\Rightarrow\begin{cases}a=\left|a\right|\\b=\left|b\right|\end{cases}\)
\(\Rightarrow\begin{cases}a\ge0\\b\ge0\end{cases}\)
Khi a + b = -( |a| + |b| ) hay a + b = -|a| - |b| thì :
\(\Rightarrow\begin{cases}a=-\left|a\right|\\b=-\left|b\right|\end{cases}\)
\(\Rightarrow\begin{cases}a< 0\\b< 0\end{cases}\)
Tìm điều kiện a và b:
IaI + IbI = Ia+bI
Giải đúng mk k thanks nha!!!
Cho a thuộc Z+,b thuộc Z- .Hãy so sánh IaI,IbI trong các trường hợp sau:
a)a+b thuộc Z+
b)a+b thuộc Z-
\(\forall a,b\in R\) ta luôn có \(\left|a+b\right|\le\left|a\right|+\left|b\right|\)
Ta biến đổi tương đương biểu thức đã cho
\(\frac{\left|a+b\right|}{1+\left|a+b\right|}\le\frac{\left|a\right|+\left|b\right|}{1+\left|a\right|+\left|b\right|}\) (*)
\(\Leftrightarrow\left|a+b\right|.\left(1+\left|a\right|+\left|b\right|\right)-\left(\left|a\right|+\left|b\right|\right).\left(1+\left|a+b\right|\right)\le0\)
\(\Leftrightarrow\left|a+b\right|+\left|a+b\right|.\left(\left|a\right|+\left|b\right|\right)-\left(\left|a\right|+\left|b\right|\right)-\left|a+b\right|.\left(\left|a\right|+\left|b\right|\right)\le0\)
\(\Leftrightarrow\left|a+b\right|-\left(\left|a\right|+\left|b\right|\right)\le0\)
\(\Leftrightarrow\left|a+b\right|\le\left|a\right|+\left|b\right|\) (luôn đúng)
Do đó (*) được chứng minh
Đẳng thức xảy ra khi và chỉ khi a, b cùng dấu.
a) | a | = | b | → a = b nếu a = b hoặc -a = -b
b) a > b → | a | > | b | nếu a và b khác 0
m.n GIẢI DÙM E VS Ạ CẦN GẤP LẮM