Cho tam giác ABC vuông tại A. Gọi M là trung điểm của AC. CM: BC^2 = 4BM^2 - 3AB^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=90^0+\widehat{BAC}\)
\(\widehat{CAD}=\widehat{DAB}+\widehat{BAC}=90^0+\widehat{BAC}\)
=>\(\widehat{BAE}=\widehat{CAD}\)
Xét ΔBAE và ΔDAC có
BA=DA
\(\widehat{BAE}=\widehat{DAC}\)
AE=AC
Do đó: ΔBAE=ΔDAC
=>BE=CD
b: Gọi giao điểm của BE với CD là H, giao điểm của BE với AC là G
ΔDAC=ΔBAE
=>\(\widehat{AEB}=\widehat{ACD}\)
Xét ΔEAG có \(\widehat{AEG}+\widehat{EGA}+\widehat{EAG}=180^0\)
Xét ΔGHC có \(\widehat{GHC}+\widehat{GCH}+\widehat{HGC}=180^0\)
=>\(\widehat{AEG}+\widehat{EGA}+\widehat{EAG}=\widehat{GHC}+\widehat{GCH}+\widehat{HGC}\)
=>\(\widehat{EAG}=\widehat{GHC}=90^0\)
=>BE vuông góc CD
Xét t/g AOB &t/g KOC, ta có:
OC=OB( O là TĐ của BC)
\(\widehat{AOB}\)=\(\widehat{KOC}\)
OA=OK(gt)
=> \(\Delta AOB=\Delta KOC\)(c-g-c)
=> AB= CK(2 cạnh t/ứ)
\(\widehat{BAO}\)=\(\widehat{CKO}\)(2gocs t/ứ)
mà chúng ở vị trí SLT
=>\(AB//Ck\)
Ta có:
\(AB\perp AC\)(\(\Delta ABC\)vuông tại A)
\(AB//CK\)
=> \(AC\perp Ck\)
=> \(\widehat{KCA}=\widehat{BAC}\left(=90^0\right)\)
Xét t/g vuông ABC &t/g vuông CKA, ta có:
AB=CK
AC chung
=> t/g vuông ABC= t/g vuông CKA(2cgv)
giúp mik với ạ