\(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}}:\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(VT=\frac{\sqrt{a}+\sqrt{b}}{2\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}-\sqrt{b}}{2\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2b}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)\(=\frac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{4\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}=VP\)(ĐPCM)
2) \(VT=\text{[}\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a+b-\sqrt{ab}\right)}{\left(\sqrt{a}+\sqrt{b}\right)}-\sqrt{ab}\text{]}.\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(a-b\right)^2}\)
\(=\frac{\left(a+b-\sqrt{ab}-\sqrt{ab}\right)\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(a-b\right)^2}\)\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(a-b\right)^2}=\frac{\left(a-b\right)^2}{\left(a-b\right)^2}=1=VP\)(ĐPCM)
4) \(VT=\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a=VP\)(ĐPCM)
Bài 1:
a)
\(\frac{\sqrt{2.3}+\sqrt{2.7}}{2\sqrt{3}+2\sqrt{7}}=\frac{\sqrt{2}(\sqrt{3}+\sqrt{7})}{2(\sqrt{3}+\sqrt{7})}=\frac{\sqrt{2}}{2}\)
b)
\(\frac{\sqrt{2}+1}{\sqrt{2}-1}=\frac{(\sqrt{2}+1)^2}{(\sqrt{2}-1)(\sqrt{2}+1)}=\frac{3+2\sqrt{2}}{2-1}=3+2\sqrt{2}\)
Bài 2:
a)
\(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}=\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}+\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}\)
\(=\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}=\sqrt{4}-\sqrt{1}=1\) (đpcm)
b)
\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{\frac{4+2\sqrt{3}}{2}}+\sqrt{\frac{4-2\sqrt{3}}{2}}\)
\(=\sqrt{\frac{(\sqrt{3}+1)^2}{2}}+\sqrt{\frac{(\sqrt{3}-1)^2}{2}}=\frac{\sqrt{3}+1}{\sqrt{2}}+\frac{\sqrt{3}-1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\) (đpcm)
c) Sửa đề:
\(\left(\frac{\sqrt{a}}{\sqrt{a}+2}-\frac{\sqrt{a}}{\sqrt{a}-2}+\frac{4\sqrt{a}-1}{a-4}\right):\frac{1}{a-4}=\left[\frac{a-2\sqrt{a}-(a+2\sqrt{a})}{(\sqrt{a}+2)(\sqrt{a}-2)}+\frac{4\sqrt{a}-1}{a-4}\right].(a-4)\)
\(=\left(\frac{-4\sqrt{a}}{a-4}+\frac{4\sqrt{a}-1}{a-4}\right).(a-4)=-4\sqrt{a}+4\sqrt{a}-1=-1\)
d)
\(\frac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{b-a}=\frac{(\sqrt{a}+\sqrt{b})^2-(\sqrt{a}-\sqrt{b})^2}{2(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}+\frac{2b}{a-b}=\frac{4\sqrt{ab}}{2(a-b)}+\frac{2b}{a-b}\)
\(=\frac{2\sqrt{ab}+2b}{a-b}=\frac{2\sqrt{b}(\sqrt{a}+\sqrt{b})}{(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
A= \(\left(\frac{\sqrt{b}}{a-\sqrt{ab}}-\frac{\sqrt{a}}{\sqrt{ab}-b}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)
A = \(\left(\frac{\sqrt{b}}{\sqrt{a}.\sqrt{a}-\sqrt{ab}}-\frac{\sqrt{a}}{\sqrt{ab}-\sqrt{b}.\sqrt{b}}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)
A = \(\left(\frac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)
A = \(\left(\frac{b}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right)\left(a\sqrt{b}-b\sqrt{a}\right)\)
A = \(\left(\frac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right).\left(\sqrt{a}.\sqrt{a}.\sqrt{b}-\sqrt{b}.\sqrt{b}\sqrt{a}\right)\)
A = \(\left(\frac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right).\left(\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\right)\)
A = b-a
B = \(\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}}{a-\sqrt{a}}\right):\frac{\sqrt{a}+1}{a-1}\)
B = \(\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{a-1}-\frac{\sqrt{a}\left(a+\sqrt{a}\right)}{a^2-a}\right).\frac{a-1}{\sqrt{a}+1}\)
B = \(\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{a-1}-\frac{\sqrt{a}.\sqrt{a}\left(\sqrt{a}+1\right)}{a\left(a-1\right)}\right).\frac{a-1}{\sqrt{a}+1}\)
\(B=\left(\frac{a\sqrt{a}\left(\sqrt{a}+1\right)}{a\left(a-1\right)}-\frac{a\left(\sqrt{a}+1\right)}{a\left(a-1\right)}\right).\frac{a-1}{\sqrt{a}+1}\)
B= \(\left(\frac{a\sqrt{a}\left(\sqrt{a}+1\right)-a\left(\sqrt{a}+1\right)}{a\left(a-1\right)}\right).\frac{a-1}{\sqrt{a}+1}\)
B= \(\left(\frac{\left(\sqrt{a}+1\right)\left(a\sqrt{a}-a\right)}{a\left(a-1\right)}\right).\frac{a-1}{\sqrt{a}+1}\)
B = \(\frac{\left(\sqrt{a}+1\right)a\left(\sqrt{a}-1\right)}{a\left(a-1\right)}.\frac{a-1}{\sqrt{a}+1}\)
\(B=\frac{a\left(\sqrt{a}^2-1^2\right)}{a\left(a-1\right)}.\frac{a-1}{\sqrt{a}+1}\)
\(B=\frac{a\left(a-1\right)}{a\left(a-1\right)}.\frac{a-1}{\sqrt{a}+1}\)
B = \(\frac{a-1}{\sqrt{a}+1}\)
\(\sqrt{\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{b}+1\right)\left(\sqrt{b}-1\right)}}=\sqrt{\frac{a-1}{b-1}}\)